
tlock: Practical timelock
encryption based on
threshold BLS

Nicolas Gailly, Kelsey Melissaris, Yolan Romailler

Now Future time

Encrypt something to the future

Cryptographic reference clock “ticks"

…

What we want

Timelock or
Timed-Release Encryption

● Tim May in 1993 on the Cypherpunks mailing list, using trusted third party.
● “Time-lock Puzzles” in 1996 by Rivest, Shamir and Wagner, using PoW.
● “The HP Time Vault Service” in 2002 by HP, using an IBE approach.
● First paper about BLS-based timelock in 2004 by Blake & Chan.
● “Time-lapse cryptography” in 2006 by Rabin and Thorpe, using DKG,

verifiable secret sharing and ElGamal encryption because:
The notion of “sending a secret message to the future” has been around for
over a decade. Despite this, no solution to this problem is in common use

Not new

https://cypherpunks.venona.com/date/1993/02/msg00129.html
https://eprint.iacr.org/2004/211
https://www.eecs.harvard.edu/~cat/tlc.pdf

• Bids in sealed-bid auctions

• Could help with Electronic Voting

• Can help with MEV and frontrunning issues

• Key escrow: “a dead-man switch for your BTC”

• Issue documents with a known embargo period

• Responsible Ransomwares: “Pay now to get the decryption key, or wait.”

• Escaping emulation: “Wait until time X has lapsed to decrypt the payload.”

Applications
Timelock

The well-known risk with responsible disclosure

Credits:
the IT Crowd

• Bids in sealed-bid auctions

• Could help with Electronic Voting

• Can help with MEV and frontrunning issues

• Key escrow: “a dead-man switch for your BTC”

• Issue documents with a known embargo period

• Responsible Ransomwares: “Pay now to get the decryption key, or wait.”

• Escaping emulation: “Wait until time X has lapsed to decrypt the payload.”

Applications
Timelock

• drand is an open source software in Go ran by a set of

independent nodes that collectively produce beacons.

• Provides public, verifiable random beacons using

• Threshold BLS on the curve BLS12-381

• Pedersen Distributed Key Generation and resharings

• Tested, audited, and deployed at scale by the League of

Entropy since 2019. Used in production since 2020.

drand
What we have

https://github.com/drand/drand

3+
years

21
nodes

0
single

point of failure

0
disruptions

since launch in
2020-08-10

18
organizations

3M+
rounds

5
endpoints

What we have
The League of Entropy

https://leagueofentropy.com

Round 4000
Aug 12th,13:00:00

Now

Round 4002
Aug 12th,13:01:00

Round 4003
Aug 12th,13:01:30

Round 4001
Aug 12th,13:00:30

Future time

Round 4010
Aug 12th,13:05:00

drand beacons map to a precise time!
What we have

A footnote in the original IBE paper in 2001 mentions that identity
decryption keys can be used as signatures, BLS does that.
=> BLS signatures can be seen as decryption keys for a specific identity.

We have a live production network issuing random beacons signed using
threshold BLS signatures at a fixed frequency with DKG and all.

How to?
What we have

Basically we are using the fact that the pairing operation is bilinear to
extract the secret key once from the public key and once from the signature
to perform a key agreement:

BLS reminder
Intuition

To get secrecy, we need to add the notion of ephemeral key to the mix:

Use it for encryption
Intuition

The beacons on the LoE `default` mainnet are

Consequences:
● No one knows the round message more than one round in advance

○ e.g. Hash(3 || signature_2) can only be known at round 2
● Requires the full chain for proper full verification
● Not compatible with IBE-based Timelock

Problem: chained randomness
In practice

New unchained randomness mode introduced in February 2022, launched on
Testnet in May and achieved general availability on Mainnet on March 1st, 2023!

Consequences:
● Messages are mapped to a given time: Hash(10) happens at time T_10
● Everybody knows the future round message getting signed ahead of time.
● Verification is much simpler and stateless, without impacting trust/security.

Solution: Unchained Randomness
In practice

BLS signatures on BLS12-381 done on 𝔾2 are ~96 bytes in compressed form.

Furthermore we need to map the message M to the group 𝔾2, which is at least
10x more costly than doing so on 𝔾1.

Problem: performance/size on-chain
In practice

BLS signature

BLS public key

New swapped group scheme launched in February 2023.

Storage benefit: signatures are now 50% smaller at 48 bytes vs 96 bytes!

Solution: swap G1 and G2
In practice

BLS signature

BLS public key

We can only encrypt small blocks of data using IBE/our timelock scheme,
since we opted for using a hash for key derivation rather than a XOF… so
we need to use hybrid encryption.

For ease, we used age to achieve this using a custom stanza for timelock
and delegating key-wrapping and data encryption to it. In theory in a way
compatible with its new plugin system:
age-encryption.org/v1

-> tlock 764081 dbd506d6ef76e5f386f41c651dcb808c5bcbd75471cc4eafa3f4df7ad4e4c493

Digression: hybrid encryption
In practice

https://github.com/FiloSottile/age

It’s almost all on ePrint

This work is explained in more detail in
our ePrint paper, and we are looking into
UC security proofs and extending it a bit
more, so don’t hesitate to check it out:

https://ia.cr/2023/189

So, let’s look at the “Real World”
part of it that’s not on ePrint!
What does “practical” mean and
why are we here today?

Details

https://eprint.iacr.org/2023/189

Our timelock
In practice

The League of Entropy part
• Permissioned network
• Threshold t > (n / 2) + 1
• 100% uptime since mainnet

launch in 2020
• Stable group public key
• Granularity of 3s
• Solid Distribution Network
• Is not dedicated for timelock

The Timelock part
• Client-side only operations
• Needs the group public key for encryption
• Queries the drand network for decryption “key”

HTTPs Public Relays / CDN Hidden HTTP relay Gossipsub relay

We have open sourced our work, providing two libraries, one in Go and one
is JS/TS. Start using timelock encryption today in your projects!

• https://github.com/drand/tlock/ (Go)
• https://github.com/drand/tlock-js/ (TS)

And we already have a third party Rust implementation that’s interoperable
with ours: https://github.com/thibmeu/tlock-rs

The library libraries
In practice

https://github.com/drand/tlock/
https://github.com/drand/tlock-js/
https://github.com/thibmeu/tlock-rs

Try it live:

timevault.drand.love

https://timevault.drand.love/

https://timevault.drand.love/
https://timevault.drand.love/

Future work

• Implement use cases! (Sealed bid auctions, MEV prevention, etc.)
• Not much research into “threshold post-quantum signatures”!
• Also not too much for “PQ-IBE” schemes.
• Most ecosystems don’t have BLS12-381 built-in functions, need for a spec.
• Some implementations do not yet support signatures on 𝔾1.
• Look into doing ZKPs on the timelocked input.
• The League of Entropy is welcoming new members!

Tomorrow we are hosting the Randomness Summit 2023, in case you want to
get in touch or learn more about it randomness beacons, VRFs, and more!

What’s next?

https://lu.ma/randomness-summit-tokyo

Thank you !
For more information and/or if you want to reach out, go to:

https://github.com/drand/tlock
https://github.com/drand/tlock-js

https://drand.love/blog/

yolan@protocol.ai
yolan@protocol.ai

@anomalroil

https://github.com/drand/tlock
https://github.com/drand/tlock-js
https://drand.love/blog/
mailto:yolan@protocol.ai
https://twitter.com/anomalroil

We also have create a standalone CLI tool tle that allows you to encrypt
and decrypt data using timelock encryption easily:

go install github.com/drand/tlock/cmd/tle@latest
Or:

git clone https://github.com/drand/tlock
go build cmd/tle/tle.go

And there’s also obviously already an alternative 3rd party Rust CLI:
https://github.com/thibmeu/drand-rs

The CLI tool

tle [--encrypt] (-r round)... [--armor] [-o OUTPUT] [INPUT]
tle --decrypt [-o OUTPUT] [INPUT]

Options:
-e, --encrypt Encrypt the input to the output. Default if omitted.
-d, --decrypt Decrypt the input to the output.
-n, --network The drand API endpoint to use.
-c, --chain The chain to use. Can use either beacon ID name or beacon hash.

Use beacon hash in order to ensure public key integrity.
-r, --round The specific round to use to encrypt the message.

Cannot be used with --duration.
-D, --duration How long to wait before the message can be decrypted.

Defaults to 120d (120 days).
-o, --output Write the result to the file at path OUTPUT.
-a, --armor Encrypt or Decrypt to a PEM encoded format.

The CLI tool

