
Timelock Encryption
based on drand

Yolan Romailler @anomalroil yolan@protocol.ai

Intro

In
tr

o

Digression: What is “randomness”?

According to the Cambridge dictionary, “randomness” is:

According to the Cambridge dictionary, “randomness” is:

 “the quality of being random”

Digression: What is “randomness”?

• We have some kind of intuition of “what is random”, usually.

• Randomness is hard, and we’re not using “true random generators”, but
instead have “pseudo random generators”.

• Also, randomness has different flavours: secret, public, verifiable,
distributed. Picking the right one for your needs is important!

The notion of randomness

● Public randomness is simply a random value that is meant
to be public, e.g. for a lottery, or a jury election.

● This is the contrary of the randomness we’re most used to,
which is the “secret” randomness, meant to be used as
secret keys, as nonce, as IV, etc.

What are public & secret
randomness?

● Public randomness is cool, but we usually want it to allow
for “public auditability” of the resulting randomness

● Verifiable randomness means we can actually verify that it
was properly issued and not manipulated after it’s revealed.

How about public & verifiable
randomness?

The notion of distributed randomness hides two aspects:

- decentralisation of trust, no single point of failure
- achieving consensus on a random value is hard

Failing at producing proper randomness can be very dangerous
for any distributed system, especially nowadays for blockchains

What is
distributed
randomness?

● DNS: Highly available source of naming information
● NTP: Highly available source of timing information
● PKIs: Trusted network delivering certificates
● Certificate transparency: Certificate authenticity information

➡ how about public randomness?

Drand is meant to be a foundational Internet protocol for randomness:
a highly available, decentralized, and publicly verifiable source of randomness

Since 2019: drand is
a public randomness service

Drand properties
● Drand is a software ran by a set of independent nodes that collectively produce

randomness

● Drand is open source¹

● Decentralized randomness service using

○ Threshold cryptography based on pairings

○ Verifiable secret sharing, Distributed Key Generation, BLS

● Binds together independent entropy sources into a publicly verifiable one

● Tested, audited, and deployed at scale

1. https://github.com/drand/drand

https://github.com/drand/drand

2+
years

23
nodes

0
single

point of failure

0
disruptions

since
2020-08-10

16
organizations

2M+
rounds

4
endpoints

What is the League of Entropy?

https://leagueofentropy.com

What is timelock
encryption? In

tr
o

W
ha

t i
s

tim
el

oc
k

en
cr

yp
tio

n?

Exactly what it sounds like: being able to encrypt toward the future

Sometimes also referred to as:

• Timelapse encryption
• Timed release encryption

Timelock
Encryption

• Bids in sealed-bid auctions

• Can help prevent MEV issues

• Conditional transfers of wealth

• Could help with Electronic Voting

• Issue documents with a known embargo period

Applications

• Responsible Ransomwares:

“Pay now to get the decryption key, or wait 6 months.”

• Escaping emulation:

“Wait until time X has lapsed to decrypt the payload.”

Applications: for fun and profit version

Timelock Encryption was initially submitted by Tim May in
1993 on the Cypherpunks mailing list.

He introduced the idea of relying on a pool of trusted third
parties to release a sealed decryption key at the proper time.

Prior art: ideation

https://cypherpunks.venona.com/date/1993/02/msg00129.html

In 1996, Rivest, Shamir and Wagner proposed a “proof of work”
way to achieve Time-lock encryption.

“There are 2 natural approaches to implementing timed-release
crypto:

• Use “time-lock puzzles”—computational problems that can
not be solved without running a computer continuously for at
least a certain amount of time.

• Use trusted agents who promise not to reveal certain
information until a specified date.”

Prior art: Rivest Time-lock Puzzles

In 1999, using their 1996 scheme, Ron Rivest created a time
capsule, LCS35, commemorating the MIT Computer Science
and Artificial Intelligence Laboratory ; he expected that puzzle
to take ~35 years to complete:

https://people.csail.mit.edu/rivest/lcs35-puzzle-description.txt

Prior art: Rivest Time-lock Puzzles

https://people.csail.mit.edu/rivest/lcs35-puzzle-description.txt

Rivest Puzzle was actually solved independently by 2 different
implementations in 2019, only 20 years later:

• In April, using a GNU GMP squaring routine for ~3.5 years on
a single i7-6700 CPU core (~4Ghz).

• In May, using a FPGA implementation with very low latency, it
only required two months for the Cryptophage collaboration
between the Ethereum Foundation, Supranational, and
Protocol Labs to solve it.

Prior art: breaking Rivest Puzzle

https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle
https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle

• Equivalent to Bitcoin POW, using hashes:
https://github.com/petertodd/timelock
https://github.com/dorianj/timelock

• Timed Commitments:
https://link.springer.com/chapter/10.1007/3-540-44598-6_15

• Provably Secure Timed-Release Public Key Encryption:
https://dl.acm.org/doi/10.1145/1330332.1330336

• Time-lapse cryptography:
https://www.eecs.harvard.edu/~cat/tlc.pdf

• “Time-Lock Puzzles from Randomized Encodings”:
https://eprint.iacr.org/2015/514.pdf

• “How to build time-lock encryption” introducing the notion of
“Computational reference clocks”:
https://link.springer.com/article/10.1007/s10623-018-0461-x

Prior art

https://github.com/petertodd/timelock
https://github.com/dorianj/timelock
https://link.springer.com/chapter/10.1007/3-540-44598-6_15
https://dl.acm.org/doi/10.1145/1330332.1330336
https://www.eecs.harvard.edu/~cat/tlc.pdf
https://eprint.iacr.org/2015/514.pdf
https://link.springer.com/article/10.1007/s10623-018-0461-x

Most of the proposals are:

- Burning the planet with proof of work-like systems
(Puzzles, Bitcoin-based, etc.) sensitive to ASICs.

- Cutting-edge cryptography that’s not battle-tested
- Impractical (obfuscation and homomorphic

cryptosystems are too slow nowadays in general)
- Never actually deployed in practice, because they

require a dedicated service.

Problems with all prior art

In practice

In
tr

o

In
 p

ra
ct

ic
e

W
ha

t i
s

tim
el

oc
k

en
cr

yp
tio

n?

Future time

Cryptographic reference clock “ticks"

…

Now

Encrypt towards the future

Round 4000
Aug 12th,13:00:00

Now

Round 4002
Aug 12th,13:01:00

Round 4003
Aug 12th,13:01:30

Round 4001
Aug 12th,13:00:30

Future time

Round 4010
Aug 12th,13:05:00

drand rounds maps to a precise time!

Using pairing-based and identity-based crypto we can achieve this without
any single trusted third party! → same trust assumptions as for the League

Drand is relying on the BLS pairing-based signature scheme.

Using identity-based encryption we can encrypt towards the (future)
signature of a given message.

How to?

How does it work?
Super easily (just kidding, see next slides):

Maths stuff:

drand primer
Maths stuff:

drand primer
Maths stuff:

drand primer
Maths stuff:

Our timelock
More maths:

Basically we are using the fact that the pairing operation is bilinear to extract
the secret key once from the public key and once from the signature to
perform a key agreement:

Pairing’s magic

To ensure secrecy, we need to add the notion of ephemeral key to the mix:

Pairing’s magic

Our timelock
More maths:

Our timelock
More maths:

Our timelock
More maths:

Expect a pre-print in the coming months and a blog post next month
going into more details about our scheme, its security, performances,
some variations and optimizations.

In the meantime the scheme is publicly available here:

https://protocollabs.notion.site/protocollabs/Timelock-Encryption-dran
d-f5df65a54a6641dfa77f9b8168c9b90b

https://protocollabs.notion.site/protocollabs/Timelock-Encryption-drand-f5df65a54a6641dfa77f9b8168c9b90b
https://protocollabs.notion.site/protocollabs/Timelock-Encryption-drand-f5df65a54a6641dfa77f9b8168c9b90b

Current randomness on the LoE mainnet is chained:

Consequences:

● No one knows the round message more than one round in advance
○ e.g. Hash(3 || sig_2) can only be known at round 2

● Requires the full chain for proper full verification

Problem: Chained Randomness

New unchained randomness mode introduced in February 2022:

Consequences:

● Everybody knows the future round message getting signed ahead of time

● Verification is simpler and less stateful, without weakening trust.

Solution: Unchained Randomness

We can only encrypt small blocks of data using our timelock encryption
scheme, how do we do to encrypt a 10Gb file?

→ using hybrid encryption:
we encrypt the data with a random “data encryption key”, and then we
only need to time-lock that small data encryption key.

Digression: hybrid encryption

We are glad to open source our work on the topic, by providing two libraries,
one in Go and one is JS/TS, which should allow you to start using timelock
encryption today in your projects!

• https://github.com/drand/tlock/ (Go)
• https://github.com/drand/tlock-js/ (TS)

Just remember we are relying on the League Of Entropy testnet for now,
which has a threshold of only 6 versus 13 on mainnet.
Timelock capability is planned on the League’s mainnet in mid-september.

The library libraries

https://github.com/drand/tlock/
https://github.com/drand/tlock-js/

We also have create a standalone CLI tool tle that allows you to encrypt
and decrypt data using timelock encryption easily:

go install github.com/drand/tlock/cmd/tle@latest

Or:

git clone https://github.com/drand/tlock
go build cmd/tle/tle.go

The CLI tool

tle [--encrypt] (-r round)... [--armor] [-o OUTPUT] [INPUT]
tle --decrypt [-o OUTPUT] [INPUT]

Options:
-e, --encrypt Encrypt the input to the output. Default if omitted.
-d, --decrypt Decrypt the input to the output.
-n, --network The drand API endpoint to use.
-c, --chain The chain to use. Can use either beacon ID name or beacon hash.

Use beacon hash in order to ensure public key integrity.
-r, --round The specific round to use to encrypt the message.

Cannot be used with --duration.
-D, --duration How long to wait before the message can be decrypted.

Defaults to 120d (120 days).
-o, --output Write the result to the file at path OUTPUT.
-a, --armor Encrypt or Decrypt to a PEM encoded format.

The CLI tool

Try it live:

timevault.drand.love

https://timevault.drand.love/

https://timevault.drand.love/
https://timevault.drand.love/

Future issues

In
tr

o

In
 p

ra
ct

ic
e

W
ha

t i
s

tim
el

oc
k

en
cr

yp
tio

n?

Fu
tu

re
 is

su
es

Long term security is HARD

● New attacks
● Quantum computers
● More computing power

Long term security is HARD

Now, add in the fact that this is a threshold network, it means you need some
kind of serious liveness guarantees to encrypt towards the distant future!

Are the nodes still going to run in 10 years? In 20 years?

Long term security is HARD

How about governance?

What happens if the League of Entropy members decide to stop the
network?

Should they release all the key material to allow to decrypt everything
immediately?
Should they destroy key material entirely, making ciphertexts
indecipherable?

Credits!

This work is actually a teamwork from the drand team!

• Nicolas Gailly: initial idea & PoC
• Patrick McClurg: JS/TS magic
• Julia Armbrust: web-demo design

And many thanks also to:
• Justin Drake for his insightful comments on the scheme
• Jason Donenfeld for making me realize people loved the idea
• Ardan Labs for collaborating on the Go code

Grow the League!

● Join the League of Entropy! Help secure timelocked
content!

● We are looking for partners that can run drand daemon or
relay nodes in diverse locations, especially in Asia.

● Infrastructure and operational requirements are minimal:
Estimated commitment: 2-3 hours/month
Costs depending on your infrastructure.

https://drand.love/partner-with-us/

https://drand.love/partner-with-us/

–Juan Benet, Protocol Labs

„We believe the internet has become
humanity’s most important technology.
We build protocols, systems, and tools

to improve how it works. ”

Thank you !
For more information and/or if you want to reach out, go to:

https://github.com/drand/tlock
https://github.com/drand/tlock-js

https://drand.love/blog/

yolan@protocol.ai
Email

@anomalroil
Twitter

https://github.com/drand/tlock
https://github.com/drand/tlock-js
https://drand.love/blog/
https://twitter.com/anomalroil

References
Details:

● http://cypherpunks.venona.com/date/1993/02/msg00129.html
● https://people.csail.mit.edu/rivest/pubs/RSW96.pdf
● https://en.wikipedia.org/wiki/BLS_digital_signature
● https://crypto.stanford.edu/~dabo/papers/bfibe.pdf
● https://en.wikipedia.org/wiki/League_of_entropy
● https://drand.love/blog/2022/02/21/multi-frequency-support-and-timelock

-encryption-capabilities/
(and its FAQ:
https://docs.google.com/document/d/16QJG3Z-Kr0mN6snQz8cm0NnMX
pYBpelKyvCf2oo1Zgc/edit?usp=sharing)

● Upcoming pre-print on eprint, with all the maths and crypto, stay tuned!

http://cypherpunks.venona.com/date/1993/02/msg00129.html
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf
https://en.wikipedia.org/wiki/BLS_digital_signature
https://crypto.stanford.edu/~dabo/papers/bfibe.pdf
https://en.wikipedia.org/wiki/League_of_entropy
https://drand.love/blog/2022/02/21/multi-frequency-support-and-timelock-encryption-capabilities/
https://drand.love/blog/2022/02/21/multi-frequency-support-and-timelock-encryption-capabilities/
https://docs.google.com/document/d/16QJG3Z-Kr0mN6snQz8cm0NnMXpYBpelKyvCf2oo1Zgc/edit?usp=sharing
https://docs.google.com/document/d/16QJG3Z-Kr0mN6snQz8cm0NnMXpYBpelKyvCf2oo1Zgc/edit?usp=sharing

