Practical exploitations of cryptographic flaws in Windows

Presentation

Yolan Romailler

- Applied CryptoGopher
- CTF dabbler
- Board game amateur
- @anomalroil

Sylvain Pelissier

- Security researcher
- Applied Cryptography
- CTF player
- @Pelissier_S
- @ipolit@mastodon.social

Security Update Guide > Details

CVE-2020-0601 | Windows CryptoAPI Spoofing Vulnerability Security Vulnerability

Published: 01/14/2020 | Last Updated : 01/16/2020 MITRE CVE-2020-0601

A spoofing vulnerability exists in the way Windows CryptoAPI (Crypt32.dll) validates Elliptic Curve Cryptography (ECC) certificates.

An attacker could exploit the vulnerability by using a spoofed code-signing certificate to sign a malicious executable, making it appear the file was from a trusted, legitimate source. The user would have no way of knowing the file was malicious, because the digital signature would appear to be from a trusted provider.

A successful exploit could also allow the attacker to conduct man-in-the-middle attacks and decrypt confidential information on user connections to the affected software.

The security update addresses the vulnerability by ensuring that Windows CryptoAPI completely validates ECC certificates.

Acknowledgements

National Security Agency

Microsoft recognizes the efforts of those in the security community who help us

Crypt32.dll

- Cryptography library coming with Microsoft Windows.
- Provide symmetric, asymmetric crypto and PRNGs.
- Used by Microsoft Edge and Google Chrome for TLS certificates.
- Used by Windows for binary signatures.
- Supports ECC only since 2017.

Elliptic Curve

A curve is defined by an equation $y^2 = x^3 + ax + b$

- over a finite field: GF(**p**)
- by its coefficients **a** and **b**
- by a generator **G** (or base point)

The "order" of a curve is its number of points.

Discrete logarithm

Easy to compute $Q = k \cdot P$ Hard to compute kfrom Q and P

$$Q = P + \dots + P = k \cdot P$$

Elliptic Curves

\$ openssl ecparam -list_curves secp128r1 : SECG curve over a 128 bit prime field secp128r2 : SECG curve over a 128 bit prime field secp160k1 : SECG curve over a 160 bit prime field secp160r1 : SECG curve over a 160 bit prime field secp160r2 : SECG/WTLS curve over a 160 bit prime field secp192k1 : SECG curve over a 192 bit prime field secp224k1 : SECG curve over a 224 bit prime field secp224r1 : NIST/SECG curve over a 224 bit prime field secp256k1 : SECG curve over a 256 bit prime field secp384r1 : NIST/SECG curve over a 384 bit prime field secp521r1 : NIST/SECG curve over a 521 bit prime field prime192v1: NIST/X9.62/SECG curve over a 192 bit prime field

Elliptic Curves

\$ openssl ecparam -name secp384r1 -text -param_enc explicit
Field Type: prime-field
Prime:

```
A:
```

```
B:
```

```
00:b3:31:2f:a7:e2:3e:e7:e4:98:8e:05:6b:e3:f8:
```

```
Generator (uncompressed):
```

```
04:aa:87:ca:22:be:8b:05:37:8e:b1:c7:1e:f3:20:
```

Named curve

```
$ openssl ec -in p384-private-key.pem -text
read EC key
Private-Key: (384 bit)
priv:
   bd:1a:36:8f:72:ef:57:c9:74:a3:19:bf:e4:0a:7a:
pub:
   04:ef:1b:79:31:5b:e2:2c:fe:b6:da:48:44:0f:08:
ASN1 OID: secp384r1
NIST CURVE: P-384
```

Explicit parameters

```
$ openssl ec -in p384-private-key-explicit.pem -text
read EC key
Private-Key: (384 bit)
priv:
   54:f5:e3:8b:ef:a0:6b:7d:51:a2:15:d2:ee:c5:69:
pub:
  04:1a:ac:54:5a:a9:f9:68:23:e7:7a:d5:24:6f:53:
Field Type: prime-field
Prime:
```

Explicit parameters

Turner, et al.

Standards Track

[Page 4]

RFC 5480 ECC SubjectPublicKeyInfo Format March 2009

- o namedCurve identifies all the required values for a particular set of elliptic curve domain parameters to be represented by an object identifier. This choice MUST be supported. See <u>Section</u> 2.1.1.1.
- o implicitCurve allows the elliptic curve domain parameters to be inherited. This choice MUST NOT be used.
- o specifiedCurve, which is of type SpecifiedECDomain type (defined in [X9.62]), allows all of the elliptic curve domain parameters to be explicitly specified. This choice MUST NOT be used. See <u>Section 5</u>, "ASN.1 Considerations".

Private and public keys

Private key: k Public key: Q = k·G

Private and public keys

Private key: \mathbf{k} Public key: $\mathbf{Q} = \mathbf{k} \cdot \mathbf{G}$

Generator defined in the specification of the **named** elliptic curve.

Private key crafting

Private key: k Public key: Q = k·G

If **G** is not verified: for a given public key **Q** Choose your own k' = 2Compute your own $G' = 2^{-1} \cdot Q$ Same public key: $Q = k' \cdot G'$

Private key crafting

Private key: k Public key: Q = k·G

If G is not verified:
for a given public key Q
Choose your own k' = 1
Compute your own G' = Q
Same public key: Q = G'

Chain of trust

End-entity Certificate

Chain of trust fools

End-entity Certificate

PoC || GTFO

← Manage certificates			
Your certificates	Servers	Authorities	Others
You have certificates on file	that identify these certifi	cate authorities	Import
org-AC Camerfirma S.A.			~
org-AC Camerfirma SA CIF A	82743287		~
org-ACCV			~
org-Actalis S.p.A./033585209	967		~
org-AffirmTrust			~
org-Agence Nationale de Ce	artification Electronique		~
org-Amazon			~
org-ANF Autoridad de Certifi	cacion		~
org-Asseco Data Systems S.	Α.		~
org-Atos			~
org-Autoridad de Certificaci	on Firmaprofesional CIF	A62634068	~

PoC || GTFO

Certificate Viewer: Default Trust:Microsoft ECC Root

Certificate Authority 2017

General	Details
General	Decans

Certificate Hierarchy

Default Trust:Microsoft ECC Root Certificate Authority 2017

Certificate Fields

🔻 Subject Public Key Info	· · · · · · · · · · · · · · · · · · ·
Subject Public Key Algorithm	
Subject's Public Key	
Certificate Key Usage	
Certificate Basic Constraints	
Certificate Subject Key ID	
Microsoft CA Version	

Field Value

00 04 D4 BC 3D 02 42 75 41 13 23 CD 80 04 86 02	
51 2F 6A A8 81 62 0B 65 CC F6 CA 9D 1E 6F 4A 66	
51 A2 03 D9 9D 91 FA B6 16 B1 8C 6E DE 7C CD DB	
79 A6 2F CE BB CE 71 2F E5 A5 AB 28 EC 63 04 66	
99 F8 FA F2 93 10 05 F1 81 28 42 F3 C6 68 F4 F6	•

×

Private key

\$ gen-key.py RootCert.pem \$ openssl ec -in p384-key-rogue.pem -text Private-Key: (384 bit)

priv:

pub:

04:d4:bc:3d:02:42:75:41:13:23:cd:80:04:86:02: 51:2f:6a:a8:81:62:0b:65:cc:f6:ca:9d:1e:6f:4a: 66:51:a2:03:d9:9d:91:fa:b6:16:b1:8c:6e:de:7c: cd:db:79:a6:2f:ce:bb:ce:71:2f:e5:a5:ab:28:ec: 63:04:66:99:f8:fa:f2:93:10:05:e1:81:28:42:e3:

Generator

\$ openssl ec -in p384-key-rogue.pem -text

Generator (uncompressed):

04:43:1f:be:a6:2d:85:8b:84:3e:38:7b:d2:90:49: ea:70:55:a0:e6:2e:65:b9:17:b2:83:df:d2:d2:0b: 8c:3b:65:b2:5d:f1:23:2f:df:40:46:81:7b:21:02: 73:b0:65:05:e9:e9:0e:84:3e:d9:78:7a:a4:8d:64: a0:58:b6:4d:6c:f6:2f:0e:9e:0a:9b:8f:12:cb:64: e9:aa:ff:97:aa:60:5b:52:55:9a:dc:4b:b3:25:30: 69:79:ad:99:70:5d:31

Order:

Demo time

Website impersonation

☐ CVE-2020-0601 check × + ▷	- 0
\leftrightarrow \rightarrow \circlearrowright \pitchfork https://chainoffools.ktp.dev/	
Hello World! This is a CryptoAPI CVE-2020-0601 POC by Kudelski Security! Read our write-up on our <u>Research blog</u> !	Informations sur le certificat
	NorthSec 2023
	NorthSec 2023 Certificat valide ⊘
	Émis par github.com
	Valide à partir du mercredi 26 avril 2023 17:54:24
	Valide jusqu'au samedi 7 septembre 2024 17:54:24
	Organisation du sujet Kudelski Security
	Localité du sujet Lausanne, Vaud

Binary signing

Contrôle de compte d'utilisateur

Voulez-vous autoriser cette application à apporter des modifications à votre appareil ?

X

Signed by NorthSec 2023

Éditeur vérifié : Microsoft Origine du fichier : Disque dur sur cet ordinateur

Afficher plus de détail

Oui	Non

Possibilities

- Meddler in the Middle
- Impersonation
- Signed malwares
- *May* escape anti-virus

Possibilities

Correction and detection

Correction: Install patch KB4534306 Detection: Explicit parameters should trigger a warning

[0x00407354]> yara add crypto_signatures.yar [0x00407354]> yara scanS CRC32_poly_Constant 0x00003f41: \$c0 : 20 83 b8 ed CRC32_poly_Constant 0x00003f41: \$c0 : 20 83 b8 ed ecc_order ff c7 63 4d 81 f4 37 2d df 58 1a b2 48 b0 a7 7a ec ec 19 6a cc c5 29 73

In the wild

+ HELPNETSECURITY

TOP 10 MOST EXPLOITED VULNERABILITIES FROM 2020

1. CVE-2020-0796: Windows SMBv3 Client/Server Remote Code Execution Vulnerability (codename: SMBGhost)

2. CVE-2020-5902: F5 Networks BIG-IP TMUI RCE vulnerability

3. CVE-2020-1472: Microsoft Netlogon Elevation of Privilege (codename: *Zerologon*)

4. CVE-2020-0601: Windows CryptoAPI Spoofing Vulnerability (codename: CurveBall)

5. CVE-2020-14882: Oracle WebLogic Server RCE

6. CVE-2020-1938: Apache Tomcat AJP File Read/Inclusion Vulnerability (codename: GhostCat)

7. CVE-2020-3452: Cisco ASA and Firepower Path Traversal Vulnerability

8. CVE-2020-0688: Microsoft Exchange Server Static Key Flaw Could Lead to Remote Code Execution

9. CVE-2020-16898: Windows TCP/IP Vulnerability (codename: Bad Neighbor)

10. CVE-2020-1350: Critical Windows DNS Server RCE (codename: SIGRed)

	ecurity Updates	법 Acknowledgements {} Developer
MSRC > Customer	Guidance > <u>Se</u>	ecurity Update Guide > Vulnerabilities > CVE 2022 34689
Windows Crypt	oAPI Spoo	fing Vulnerability
CVE-2022-34689		
Security Vulnerab	ility	
Released: Oct 11, 2022		
Assigning CNA: 🕕	Microsoft	
<u>CVE-2022-34689</u> [2]		
Exploitability		
Exploitability		
The following table pro	ovides an <u>exploi</u>	tability assessment for this vulnerability at the time of original publication.
Publicly Disclosed	Exploited	Latest Software Release

Acknowledgements

UK National Cyber Security Centre (NCSC) and the National Security Agency (NSA)

Microsoft recognizes the efforts of those in the security community who help us prote

PoC

- Akamai were the first to <u>publish a PoC</u> for Meddler in the Middle attacks along with <u>a blog post</u>.
- Published colliding certificates (no secret keys) and MitM scripts.
- Not customizable for your needs.

Exploiting a Critical Spoofing Vulnerability in Windows CryptoAPI

Akamai Security Research

January 25, 2023

Culprit: certificate cache

- A verified certificate may be cached by Windows
- The cache is a **hashtable using the MD5 hash** of the cert
- If a certificate is in cache it is not verified again
- Bypass signature verification.

CVE-2022-34689

MD5 is known to be vulnerable to chosen-prefix collision attacks since **2005**!

Certificate tweaking

The MD5 is taken over the full TBS certificate but ...

CertificateList ::= SEQUENCE { tbsCertList TBSCertList, signatureAlgorithm AlgorithmIdentifier, signatureValue BIT STRING }

> AlgorithmIdentifier ::= SEQUENCE { algorithm OBJECT IDENTIFIER, parameters ANY DEFINED BY algorithm OPTIONAL }

To cache or not to cache

• It applies only if the certificate is cached

Value	Meaning
CERT_CHAIN_CACHE_END_CERT 0x00000001	Information in the end certificate is cached. By default, information in all certificates except the end certificate is cached as a chain is built. Setting this
	flag extends the caching to the end certificate.

Code signing

- In the advisory the vulnerability is said to apply to code signing
- It applies only if the certificate is cached

Value	Meaning
CERT_CHAIN_CACHE_END_CERT 0x0000001	Information in the end certificate is cached. By default, information in all certificates except the end certificate is cached as a chain is built. Setting this flag extends the caching to the end certificate.

- We expected intermediate to be cached ...
- POC||GTFO: for code signing we are still missing something

Code signing

All of our code, scripts, POC certificates and even private keys for colliding intermediate are available:

- github.com/kudelskisecurity/northsec crypto api attacks
- Contributions welcomed !

Conclusion

- With Cryptography implementations, details matter
- Do not implement and use deprecated features or algorithms like MD5
- More crypto attacks this afternoon with Matt Cheung!
- Next time you see an announcement from NSA, bindiff FTW

Questions

