
Practical exploitations of cryptographic flaws
in Windows

Presentation

Sylvain Pelissier

● Security researcher
● Applied Cryptography
● CTF player
● @Pelissier_S
● @ipolit@mastodon.social

Yolan Romailler

● Applied CryptoGopher

● CTF dabbler

● Board game amateur

● @anomalroil

Crypt32.dll

● Cryptography library coming with Microsoft Windows.
● Provide symmetric, asymmetric crypto and PRNGs.
● Used by Microsoft Edge and Google Chrome for TLS

certificates.
● Used by Windows for binary signatures.
● Supports ECC only since 2017.

Elliptic Curve

A curve is defined by an equation y²=x³+ax+b
● over a finite field: GF(p)
● by its coefficients a and b
● by a generator G (or base point)

The “order” of a curve is its number of points.

Discrete logarithm

Easy to compute Q = k·P
Hard to compute k
from Q and P

Elliptic Curves

39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319

$ openssl ecparam -list_curves
 secp128r1 : SECG curve over a 128 bit prime field
 secp128r2 : SECG curve over a 128 bit prime field
 secp160k1 : SECG curve over a 160 bit prime field
 secp160r1 : SECG curve over a 160 bit prime field
 secp160r2 : SECG/WTLS curve over a 160 bit prime field
 secp192k1 : SECG curve over a 192 bit prime field
 secp224k1 : SECG curve over a 224 bit prime field
 secp224r1 : NIST/SECG curve over a 224 bit prime field
 secp256k1 : SECG curve over a 256 bit prime field
 secp384r1 : NIST/SECG curve over a 384 bit prime field
 secp521r1 : NIST/SECG curve over a 521 bit prime field
 prime192v1: NIST/X9.62/SECG curve over a 192 bit prime field

Elliptic Curves

39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319

$ openssl ecparam -name secp384r1 -text -param_enc explicit
Field Type: prime-field
Prime:
 00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
 ...
A:
 00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
 ...
B:
 00:b3:31:2f:a7:e2:3e:e7:e4:98:8e:05:6b:e3:f8:
 ...
Generator (uncompressed):
 04:aa:87:ca:22:be:8b:05:37:8e:b1:c7:1e:f3:20:

Named curve
$ openssl ec -in p384-private-key.pem -text
read EC key
Private-Key: (384 bit)
priv:

bd:1a:36:8f:72:ef:57:c9:74:a3:19:bf:e4:0a:7a:
...

pub:
04:ef:1b:79:31:5b:e2:2c:fe:b6:da:48:44:0f:08:
...

ASN1 OID: secp384r1
NIST CURVE: P-384

Explicit parameters
$ openssl ec -in p384-private-key-explicit.pem -text
read EC key
Private-Key: (384 bit)
priv:
 54:f5:e3:8b:ef:a0:6b:7d:51:a2:15:d2:ee:c5:69:

…
pub:

04:1a:ac:54:5a:a9:f9:68:23:e7:7a:d5:24:6f:53:
…

Field Type: prime-field
Prime:

00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
…

A:
00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:

Explicit parameters

Private and public keys

Private key: k
Public key: Q = k·G

Private and public keys

Private key: k
Public key: Q = k·G

Generator defined in
the specification of the
named elliptic curve.

Private key crafting

Private key: k
Public key: Q = k·G

If G is not verified:
for a given public key Q
Choose your own k’ = 2
Compute your own G’ = 2-1·Q
Same public key: Q = k’·G’

Private key crafting

Works with 1 !

Private key: k
Public key: Q = k·G

If G is not verified:
for a given public key Q
Choose your own k’ = 1
Compute your own G’ = Q
Same public key: Q = G’

Chain of trust

Chain of trust fools

PoC || GTFO

PoC || GTFO

Private key
$ gen-key.py RootCert.pem
$ openssl ec -in p384-key-rogue.pem -text
Private-Key: (384 bit)
priv:

00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:
00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:
00:00:02

pub:
04:d4:bc:3d:02:42:75:41:13:23:cd:80:04:86:02:
51:2f:6a:a8:81:62:0b:65:cc:f6:ca:9d:1e:6f:4a:
66:51:a2:03:d9:9d:91:fa:b6:16:b1:8c:6e:de:7c:
cd:db:79:a6:2f:ce:bb:ce:71:2f:e5:a5:ab:28:ec:
63:04:66:99:f8:fa:f2:93:10:05:e1:81:28:42:e3:
c6:68:f4:e6:1b:84:60:4a:89:af:ed:79:0f:3b:ce:

Generator
$ openssl ec -in p384-key-rogue.pem -text
...
Generator (uncompressed):

04:43:1f:be:a6:2d:85:8b:84:3e:38:7b:d2:90:49:
ea:70:55:a0:e6:2e:65:b9:17:b2:83:df:d2:d2:0b:
8c:3b:65:b2:5d:f1:23:2f:df:40:46:81:7b:21:02:
73:b0:65:05:e9:e9:0e:84:3e:d9:78:7a:a4:8d:64:
a0:58:b6:4d:6c:f6:2f:0e:9e:0a:9b:8f:12:cb:64:
e9:aa:ff:97:aa:60:5b:52:55:9a:dc:4b:b3:25:30:
69:79:ad:99:70:5d:31

Order:
00:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:c7:63:4d:81:f4:
37:2d:df:58:1a:0d:b2:48:b0:a7:7a:ec:ec:19:6a:
cc:c5:29:73

Demo time

Website impersonation

Binary signing

Possibilities

• Meddler in the Middle
• Impersonation
• Signed malwares
• May escape anti-virus

Possibilities

Correction and detection
Correction: Install patch KB4534306
Detection: Explicit parameters should trigger a warning

[0x00407354]> yara add crypto_signatures.yar
[0x00407354]> yara scanS
CRC32_poly_Constant
0x00003f41: $c0 : 20 83 b8 ed
CRC32_poly_Constant
0x00003f41: $c0 : 20 83 b8 ed
ecc_order
0x001619f7: $secp384r1 : ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff c7 63 4d 81 f4 37 2d df 58 1a
0d b2 48 b0 a7 7a ec ec 19 6a cc c5 29 73

In the wild

PoC

• Akamai were the first to publish a PoC for Meddler in
the Middle attacks along with a blog post.

• Published colliding certificates (no secret keys) and
MitM scripts.

• Not customizable for your needs.

https://github.com/akamai/akamai-security-research/tree/main/PoCs/CVE-2022-34689
https://www.akamai.com/blog/security-research/exploiting-critical-spoofing-vulnerability-microsoft-cryptoapi

• A verified certificate may be cached by Windows
• The cache is a hashtable using the MD5 hash of the cert
• If a certificate is in cache it is not verified again
• Bypass signature verification.

Culprit: certificate cache

CVE-2022-34689
MD5 is known to be vulnerable to chosen-prefix collision
attacks since 2005!

Certificate tweaking

The MD5 is taken over the full TBS certificate but …

To cache or not to cache

• It applies only if the certificate is cached

Code signing
• In the advisory the vulnerability is said to apply

to code signing
• It applies only if the certificate is cached

• We expected intermediate to be cached …
• POC||GTFO: for code signing we are still missing

something

Code signing

All of our code, scripts, POC certificates and even
private keys for colliding intermediate are available:
• github.com/kudelskisecurity/northsec_crypto_api_attacks
• Contributions welcomed !

https://github.com/kudelskisecurity/northsec_crypto_api_attacks

Conclusion

● With Cryptography implementations, details matter
● Do not implement and use deprecated features or

algorithms like MD5
● More crypto attacks this afternoon with Matt Cheung!
● Next time you see an announcement from NSA, bindiff FTW

Questions

