
Public, verifiable, and
unbiasable randomness
wassat?
or Randomness 101

Yolan Romailler (@anomalroil)

→ SWE / applied cryptographer @ Protocol Labs

→ CTF player (mostly crypto, forensic & misc)

→ Board games amateur

→ Speaker at Black Hat, DEF CON, GopherConEU, and
it’s my 2nd time at North Sec!

→ Maths background, but don’t worry!

Who am I?

yolan@protocol.ai
Email

https://twitter.com/anomalroil
Twitter

• What is randomness and its flavours?

• Why do we need it?

• Why are there problems with it?

• In practice

• Future works

Agenda

What is randomness?

W
ha

t i
s

ra
nd

om
ne

ss
?

W
hy

 d
o

w
e

ne
ed

 it
?

W
hy

 a
re

 th
er

e
pr

ob
le

m
s

w
ith

 it
?

In
 p

ra
ct

ic
e

Fu
tu

re
 w

or
ks

What is randomness?
According to the Cambridge dictionary, randomness is:

● “the quality of being random”

What is randomness?
According to the Cambridge dictionary, randomness is:

● “the quality of being random”

Granted, they refine it a bit:

● “the quality of being random (= happening, done, or chosen by
chance rather than according to a plan)”

What is randomness?
According to the Cambridge dictionary, randomness is:

● “the quality of being random”

Granted, they refine it a bit:

● “the quality of being random (= happening, done, or chosen by
chance rather than according to a plan)”

But I still prefer the Oxford Languages definition:

● “the quality or state of lacking a pattern or principle of
organization; unpredictability”

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101 → 0x09ebd9ac05
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101 → 0x09ebd9ac05
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101 → 0x09ebd9ac05
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011 → 0x12345678ab
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101 → 0x09ebd9ac05
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011 → 0x12345678ab
0b1010101010101010101010101010101010101

Is that random?

0b1111111111111111111111111111111111111
0b0100111101011110110011010110000000101 → 0x09ebd9ac05
0b1000000000000000000111111111111111111
0b1001000110100010101100111100010101011 → 0x12345678ab
0b1010101010101010101010101010101010101

And yet all of them have the same probability to occur in a random draw!

• So, we have some kind of intuition of “what is random”, but it still can be fooled.

• A more formal treatment of randomness can be done using “the Kolmogorov
complexity” which can also help us understand our intuition.

• The Kolmogorov complexity of something is the length of a shortest program (in
a given language) that produces that thing as output:

print(‘0b’+37*’1’) → 19 chars
print(‘0b1111111111111111111111111111111111111’) → 48 chars

The notion of randomness

● Public randomness is simply a random value that is meant
to be public

● Its goal is often to increase the trust we have in a random
“draw” (think of lotteries, tombola, jury election, etc.)

● We want public randomness typically for:
○ avoiding risks of manipulation
○ “be off the hook” in case of issues

What is public randomness?

vs “secret” randomness

We often rely on “secret” randomness:
- to generate keys, both for public key cryptography and symmetric cryptography
- for ephemeral keys / IV / nonces (most protocols need some kind to ensure forward

secrecy)

WARNING:
DO NOT USE PUBLIC RANDOMNESS TO GENERATE CRYPTOGRAPHIC MATERIAL

● Public randomness is cool, but we usually want it to allow for
“public auditability” of the resulting randomness

● Verifiable randomness means we can easily verify that it was
properly issued and not manipulated

● To achieve such auditability we typically use:
○ signatures
○ secure hardware & “remote attestations”
○ in general: complex cryptography

What about verifiable randomness?

The notion of distributed randomness hides two aspects:

- decentralisation of trust, no single point of failure
- achieving consensus on a random value is hard

Failing at producing proper randomness can be very dangerous
for any distributed system, especially nowadays for blockchains

What is
distributed
randomness?

Why do we need
randomness? W

ha
t i

s
ra

nd
om

ne
ss

?

W
hy

 d
o

w
e

ne
ed

 it
?

W
hy

 a
re

 th
er

e
pr

ob
le

m
s

w
ith

 it
?

In
 p

ra
ct

ic
e

Fu
tu

re
 w

or
ks

Why do we need randomness ?
● Lotteries, jury selection, election event, audits…

● Protocols & Cryptography:
○ Protocols: leader election in Proof of Stake blockchains, Tor (path selection), sharding
○ Gossiping: randomly choosing peers in the network to disseminate information
○ Parameters: Nonces & IV for symmetric encryptions, composite or prime numbers for

selecting a field for RSA, or even ECC
○ Schemes: Diffie Hellman exchange, Schnorr signatures, more generally for zero

knowledge proofs…

● Statistics: sampling, reducing bias in controlled trials in medicine

● Software: fuzzing, chaos monkey, etc

● Even for cleromancy and divination … !

Why are there problems
with randomness? W

ha
t i

s
ra

nd
om

ne
ss

?

W
hy

 d
o

w
e

ne
ed

 it
?

W
hy

 a
re

 th
er

e
pr

ob
le

m
s

w
ith

 it
?

In
 p

ra
ct

ic
e

Fu
tu

re
 w

or
ks

This is something you’ll often hear whenever you talk to an applied
cryptographer who did some code assessment in their life.

In general it’s very important to have “proper” randomness, that is:
● Unpredictable: impossible to predict the next numbers
● Bias-resistant: the final output cannot be biased in any way

“Randomness is hard”

● If you can predict the random value, you can “cheat” (gambling, games,
etc.)

● If you can predict who’s going to be selected, fairness isn’t guaranteed
anymore (think of leader election, sharding, jury election, …)

● If you can predict “a secret key”, then the security of the system is
compromised

Why unpredictable?

● The (EC)DSA signature scheme requires uniformly distributed nonces for
its “k” value, and attacks exploiting biased ephemeral keys are known
since 1999, and used in practice (the PS3 hack, Biased Nonce Sense, etc.)

● the ElGamal signature schemes in general (caused a vuln in GPG)
● the Schnorr signature schemes in general (just like the others)

Notice that a nonce can be biased on less than a bit and still lead to key
recovery attacks!

Why unbiased?

Get a value x between 0 and 255:
import os
x = ord(os.urandom(1))

Get a value x between 0 and 106
import os
x = ord(os.urandom(1)) % 107

It’s easy to have biased randomness

Get a value x between 0 and 255:
import os
x = ord(os.urandom(1))

Get a value x between 0 and 106
import os
x = ord(os.urandom(1)) % 107

It’s easy to have biased randomness

This is a Modulo Bias

Out of the 256 possible values of a random bytes, from 0
to 255, if we reduce modulo 107, then the lowest 42 first
values are more likely to occur because 255 % 107 = 42

How to avoid bias?
Use a “crypto library” to get your random values:

○ Python’s secrets secrets.randbelow(107)

○ Go’s `crypto/rand`: rand.Int(rand.Reader, big.NewInt(107))

○ Rust’s `rand`: thread_rng().gen_range(0..107);

Read more about modulo bias, and “rejection sampling”:

 The definitive guide to “modulo bias and how to avoid it”

https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/

In practice

W
ha

t i
s

ra
nd

om
ne

ss
?

W
hy

 d
o

w
e

ne
ed

 it
?

W
hy

 a
re

 th
er

e
pr

ob
le

m
s

w
ith

 it
?

In
 p

ra
ct

ic
e

Fu
tu

re
 w

or
ks

M. Rabin first proposed the usage of “random beacons” in
1993 to secure transactions 1:

“These transactions are provably impossible without a trusted
intermediary. However, they can be implemented with just a
small probability of a participant cheating his partner, by use
of a beacon emitting random integers”

1 https://doi.org/10.1016/0022-0000(83)90042-9

History: Beacons

https://doi.org/10.1016/0022-0000(83)90042-9

Public randomness services exist since a long time:

“RANDOM.ORG offers true random numbers to anyone on the
Internet. The randomness comes from atmospheric noise,
which for many purposes is better than the pseudo-random
number algorithms typically used in computer programs.
People use RANDOM.ORG for holding drawings, lotteries and
sweepstakes, to drive online games, for scientific applications
and for art and music. The service has existed since 1998”

History: Prior art

• The idea of running a public, verifiable “trusted” randomness
beacon was first proposed by NIST in 2011

• Their NIST Beacon v1 was launched on 2013-09-05
• Their NIST Beacon v2 was launched in 2019:

 https://doi.org/10.6028/NIST.IR.8213-draft

History: The NIST Beacons

https://doi.org/10.6028/NIST.IR.8213-draft

Previous attempts to generate public randomness

1. https://www.nist.gov/programs-projects/nist-randomness-beacon
2. https://eprint.iacr.org/2015/1015
3. https://eprint.iacr.org/2016/1067.pdf

Some examples:

● NIST Randomness beacon¹ based on quantum entanglement:
○ Unpredictability, autonomy, consistency
○ We still need to trust NIST and its “secure hardware”… (remember the DUAL_EC_DRBG fiasco)

● Bitcoin²: Using blockchain as a source of random value
○ Promising, but slow, relies on PoW which is inefficient and leads to centralization

● Randhound³: the jackpot!
○ Scalable, bias-resistant, unpredictable, publicly verifiable, decentralized
○ Relies on solid cryptographic assumptions, uses ECC
○ But offers probabilistics guarantees, has complex setup, large transcript to verify, multiple RTT,

6s generation…
 Can we do simpler & faster ?

https://www.nist.gov/programs-projects/nist-randomness-beacon
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2016/1067.pdf

● DNS: Highly available source of naming information
● NTP: Highly available source of timing information
● PKIs: Trusted network delivering certificates
● Certificate transparency: Certificate authenticity information

➡ Drand: Highly available, decentralized, and publicly verifiable
source of randomness

Drand is meant to be a foundational Internet protocol for randomness

The Internet needed a randomness
service, just like it has:

Drand properties
● Drand is a software ran by a set of independent nodes that collectively produce randomness

● Drand is open source¹, coded in Go

○ Originally from DEDIS@EPFL, moved to its own organization

○ Now supported by Protocol Labs

● Decentralized randomness service using

○ (t-n) Distributed Key Generation: t = n/2

○ Verifiable secret sharing, threshold cryptography

○ Key is defined on G2 of the BLS12-381 pairing curve, to achieve 128 bits of security

● Binds together independent entropy sources into a publicly verifiable one

● Tested, audited, and deployed (more on that later)

1. https://github.com/drand/drand

https://github.com/drand/drand

Drand properties
Decentralized: a threshold of nodes operated by different parties is needed to generate
randomness; there is no central point of failure.

Unpredictable: no party learns anything about the output of the round until a sufficient
number of drand nodes reveals their contributions thanks to threshold cryptography.

Bias Resistant: the output represents an unbiased, uniformly random value.

Verifiable: the random output is third-party verifiable by verifying the aggregate BLS
signatures against the collective public key computed during setup.

More about the security model can be found online: https://drand.love/docs/security-model/

https://drand.love/docs/security-model/

Public HTTP(S) endpoints are available at:
- https://drand.cloudflare.com/info
- https://api.drand.sh/info

Firefox even supports
a nice JSON viewer

Public API:
web endpoints

curl https://api.drand.sh/public/latest

The League of Entropy
The League is a global drand
network composed of multiple
independent, diversified
organizations

● Created in June 2019¹ with initially 10
members.

● It is now composed of 16 members, 23
nodes and a threshold of 12.

And since it’s open-source, anybody can
run such a network!

1. https://www.cloudflare.com/leagueofentropy/

https://www.cloudflare.com/leagueofentropy/

drand network: the League of Entropy

The “entropy”

Lava lamps in the Cloudflare lobby. Courtesy of @mahtin

The only moment where
fresh entropy is required is
during the Distributed Key
Generation.

Some partners are getting
their entropy sources from
so-called “TRNG”, based on
physical properties known
to be unpredictable.

https://twitter.com/mahtin/status/888251632550424577

drand network: the League of Entropy

Facts & Figures

1+
year

23
nodes

0
single

point of failure

0
disruptions

since 2020-08-10

16
organizations

1.9M+
rounds

4
endpoints

USA
Switzerland
Chile
Portugal
Great Britain

on-prem
AWS
Cloudflare
Azure
Exoscale

Jurisdiction
Partner Diversity

Israel

Multi Protocol Support

We can now have different
protocols for different use
cases in parallel!

Current target: have a
higher frequency
network

This was just launched
on our testnet!

Current randomness is chained:

Consequences:

● No one knows the message before one round in advance
○ Hash(3 || sig_2) can only be known at round 2

● Need the full chain verification in applications

Chained Randomness

New unchained randomness:

Consequences:

● Anybody can predict the message ahead of time

● Verification is simpler and less stateful

Unchained Randomness

Future works

W
ha

t i
s

ra
nd

om
ne

ss
?

W
hy

 d
o

w
e

ne
ed

 it
?

W
hy

 a
re

 th
er

e
pr

ob
le

m
s

w
ith

 it
?

In
 p

ra
ct

ic
e

Fu
tu

re
 w

or
ks

● Being able to encrypt toward the future

● Idea initially submitted by Tim May in 1993 on the Cypherpunks mailing list
that introduced the idea of relying on a pool of trusted third parties to release
the sealed decryption key at the proper time.

● Using paring-based and identity-based crypto we can achieve this without
any single trusted third party! → same trust assumptions as for the League

● Can significantly reduce frontrunning, and help mitigate MEV issues!
● Relying on drand’s new unchained randomness beacons, we’ll release

open-source libraries and clients to do timelock encryption later this year!

Timelock encryption!

Find more users!

● drand is used by Filecoin for Leader election!

● drand is currently integrated on-chain on some blockchain
systems, to help produce proper randomness for smart
contracts. Notice that in such cases extra care must be taken
to properly handle front-running.

● It was used to increase the entropy of a RNG certified by
Gaming Labs International for several lottery games

https://drand.love/

https://drand.love/

Grow the League!

● Join the League of Entropy!
join the effort to provide a randomness service as a foundational component of
the Internet protocol stack

● We are looking for partners that can run multiple drand core
or relay nodes.

● Infrastructure and operational requirements are minimal:
Estimated commitment: 2-3 hours/month

https://drand.love/partner-with-us/

https://drand.love/partner-with-us/

Thank you !
For more information and/or if you want to reach out, go to:

https://drand.love
https://leagueofentropy.com

https://github.com/drand/drand

yolan@protocol.ai
Email

https://twitter.com/anomalroil
Twitter

