
tlock: encrypting
messages to the future
in Go

Yolan Romailler

Now Future time

Encrypt something to the future

Clock “ticks”

…

What we want

Timelock or
Timed-Release Encryption

● Tim May in 1993 on the Cypherpunks mailing list, using trusted third party.
● “Time-lock Puzzles” in 1996 by Rivest, Shamir and Wagner, using PoW.
● “The HP Time Vault Service” in 2002 by HP, using an IBE approach.
● First paper about BLS-based timelock in 2004 by Blake & Chan.
● “Time-lapse cryptography” in 2006 by Rabin and Thorpe, using DKG,

verifiable secret sharing and ElGamal encryption because:
The notion of “sending a secret message to the future” has been around for
over a decade. Despite this, no solution to this problem is in common use

Not new

https://cypherpunks.venona.com/date/1993/02/msg00129.html
https://eprint.iacr.org/2004/211
https://www.eecs.harvard.edu/~cat/tlc.pdf

• Bids in sealed-bid auctions

• Could help with Electronic Voting

• Can help with MEV and frontrunning issues

• Key escrow: “a dead-man switch for your BTC”

• Issue documents with a known embargo period

• Responsible Ransomwares: “Pay now to get the decryption key, or wait.”

• Escaping emulation: “Wait until time X has lapsed to decrypt the payload.”

Applications
Timelock

The well-known risk with responsible disclosure

Credits:
the IT Crowd

• Bids in sealed-bid auctions

• Could help with Electronic Voting

• Can help with MEV and frontrunning issues

• Key escrow: “a dead-man switch for your BTC”

• Issue documents with a known embargo period

• Responsible Ransomwares: “Pay now to get the decryption key, or wait.”

• Escaping emulation: “Wait until time X has lapsed to decrypt the payload.”

Applications
Timelock

How does it work?
Super easily (https://ia.cr/2023/189):

Left as an exercise:

https://eprint.iacr.org/2023/189

We can only encrypt small blocks of data using our timelock scheme…
so we need to use hybrid encryption: encrypt the data with a “data
encryption key” using a (fast) symmetric algorithm, encrypt the “data
encryption key using our timelock scheme.

For ease, we used age to achieve this using a custom stanza for timelock.
In theory in a way compatible with its new plugin system:
age-encryption.org/v1

-> tlock 764081 dbd506d6ef76e5f386f41c651dcb808c5bcbd75471cc4eafa3f4df7ad4e4c493

Digression: hybrid encryption
In practice

https://github.com/FiloSottile/age

age: “A simple, modern and secure encryption tool (and Go library)”

import (
"filippo.io/age"

)
// generate private and public keys
bob, err := age.GenerateX25519Identity()
bobPublicKey := bob.Recipient()
[...]

Digression: age
In practice

var ciphertext bytes.Buffer
encryptor, err := age.Encrypt(&ciphertext, bobPublicKey)
encryptor.Write([]byte("Hello GopherconEU!"))
encryptor.Close()
fmt.Println(ciphertext.String())

age-encryption.org/v1
-> X25519 ht++CvfgN6sW7azrSEyD0I7Avb1G1DBSfqqU33aixio
5dL+AseiDxvANIdTRQ3Ai/OLxxcbmKlLPoHHiNi6omQ
--- JLBpp45/31ef/nxVaW0bssN+gZxyptsTnndmujZsbqA
K��-H7��uʧ�f��"ѮtG����$���!��#�2H��R���

Digression: age
In practice

Our timelock
In practice

The League of Entropy part
• Permissioned network
• Threshold t > (n / 2) + 1
• 100% uptime since mainnet

launch in 2020
• Stable group public key
• Granularity of 3s
• Solid Distribution Network
• Is not dedicated to timelock

The Timelock part
• Client-side only operations
• Needs the group public key for encryption
• Queries the drand network for decryption “key”

HTTPs Public Relays / CDN Hidden HTTP relay Gossipsub relay

We have open sourced our work, providing two libraries, one in Go in collab
with Ardan Labs and one is JS/TS. Start using timelock encryption today in
your projects!

• https://github.com/drand/tlock/ (Go)
• https://github.com/drand/tlock-js/ (TS)

And we already have a third party Rust implementation that’s interoperable
with ours: https://github.com/thibmeu/tlock-rs

The library libraries
In practice

https://github.com/drand/tlock/
https://github.com/drand/tlock-js/
https://github.com/thibmeu/tlock-rs

We also have create a standalone CLI tool tle that allows you to encrypt
and decrypt data using timelock encryption easily:

go install github.com/drand/tlock/cmd/tle@latest
Or:

git clone https://github.com/drand/tlock
cd tlock
go build cmd/tle/tle.go

The CLI tool

import (
"github.com/drand/tlock"
"github.com/drand/tlock/networks/http"

)
[...]

host := "https://api.drand.sh/"
chainHash := "dbd506d6ef76e5f386f41c651dcb808c5bcbd75471cc4eafa3f4df7ad4e4c493"
network, err := http.NewNetwork(host, chainHash)
[...]

err = tlock.New(network).Encrypt(ciphertext, data, roundNumber)
[...]

err = tlock.New(network).Decrypt(recovered, ciphertext)

Playground link.

The library

https://go.dev/play/p/xrd24Ef-bwH

And you get a ciphertext nobody can decrypt until 15h55 today!

-----BEGIN AGE ENCRYPTED FILE-----
YWdlLWVuY3J5cHRpb24ub3JnL3YxCi0+IHRsb2NrIDM0NTM5MDEgZGJkNTA2ZDZl
Zjc2ZTVmMzg2ZjQxYzY1MWRjYjgwOGM1YmNiZDc1NDcxY2M0ZWFmYTNmNGRmN2Fk
NGU0YzQ5MwpnNDZkbVNvYkVseDRBQXdBczE0bTJwbUdRVU93M20vMkU2UTBhVDg2
MXp4Qm1oTUhEMFpKTHREcm1kVEhGTjdXCkNZSWxDZ2hVWjk5TzBzNHRwU3NIYVpm
VEd0VXNpN0M4ZVlhY2NiZXRrZXU1OExSUmt6cEp5QlBSMXdtSlRkWmUKbGxVMTVG
ZU9tU0ZoTUQvVVdMVUNkRlExL2VrT1FLMkt1TmhSeW1KREEySQotLS0gYjh0c3Zi
clYycHRnUDlJTkVGcnUxUmoyS0VrMm5vRjBCVXU5alozSWk1bwoq8IbieaktDUMO
b/lgMdMeDkTG3N1+TT66atjA6UUdXGjnMMfVOLXeBJdg0kwgRPHFmSqsgQKXRDUE
HQvwlonWN4+PAjE0qQRwIDl6gc54Ng+0gUcXbMR3/tVOfmmjSFo=
-----END AGE ENCRYPTED FILE-----

The library

Try it live:

timevault.drand.love

https://timevault.drand.love/

https://timevault.drand.love/
https://timevault.drand.love/

Thank you !

For more information, go to:
https://github.com/drand/tlock

yolan@protocol.ai
yolan@protocol.ai

@anomalroil

https://github.com/drand/tlock
mailto:yolan@protocol.ai
https://twitter.com/anomalroil

