
A Supply Chain Issue Lurking in 
Your API

Yolan Romailler - Cryptogopher @ 



The software supply chain attacks have been discussed over and 
over again notably because of:

- CCleaner hack in 2017, infected official version on the website
- SolarWind hack in 2020, infected management software
- Kaseya update in 2021, spread ransomware to customers

How about the code supply chain ones? 
We use a lot of dependencies that we have not reviewed!

Go-ethereum has 108 dependencies, including 58 external ones.

(Mandatory XKCD is mandatory 🤷)

The problem?



The software supply chain attacks are have been discussed over and 
over again notably because of:

- CCleaner hack in 2017, infected official version on the website
- SolarWind hack in 2020, infected management software
- Kaseya update in 2021, spread ransomware to customers

How about the code supply chain ones? 
We use a lot of dependencies that we have not reviewed!

Go-ethereum has 108 dependencies, including 58 external ones.

(Mandatory XKCD is mandatory 🤷)

The problem?



The problem? CCleaner hack

In 2017, 2.2+M downloads of an infected version of CCleaner (a tool meant to 
clean/debloat your Windows devices) that was distributed through the official 
website after the compromise of an employee’s computer.

This is often referred to as a good example of a software supply chain attack 
because the users were infected by a compromised version of the software 
provided through the official channels.

When talking about supply chain management for a programming language, this is 
typically not the kind of attacks we have in mind!



The problem?

- Typosquatting of dependencies (siruspen != sirupsen, gobuffalo != gobuffallo,…)
- They exist in the wild! (See https://michenriksen.com/blog/finding-evil-go-packages/)

- Phishing of maintainers to infect existing dependencies
- Attackers creating weaponized dependencies and adding them to projects 

(e.g. logging, colored logs, small new feature, etc.)
- The code you see on Github is not necessarily the code you get, it depends 

on the proxy, the module path and the tags used.
- We do have a transparency log: sum.golang.org, but there is no way currently 

of knowing if some code has been reviewed already or not, and by who.



The problem?

- Typosquatting of dependencies (siruspen != sirupsen, gobuffalo != gobuffallo,…)
- They exist in the wild! (See https://michenriksen.com/blog/finding-evil-go-packages/)

- Phishing of maintainers to infect existing dependencies
- Attackers creating weaponized dependencies and adding them to projects 

(e.g. logging, colored logs, small new feature, etc.)
- The code you see on Github is not necessarily the code you get, it depends 

on the proxy, the module path and the tags used.
- We do have a transparency log: sum.golang.org, but no way currently of 

knowing if some code has been reviewed already or not, and by who.



Today’s example of a Go supply chain attack

How does the crypto/rsa signature verification work?

According to the doc:

https://pkg.go.dev/crypto/rsa#example-VerifyPKCS1v15


Today’s example of a Go supply chain attack

How does the crypto/rsa signature verification work?

According to the doc, like that: https://go.dev/play/p/k0s6TKDRjU6 

[...]
hashed := sha256.Sum256(message)
err := rsa.VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA256, hashed[:], signature)
if err != nil {

fmt.Fprintf(os.Stderr, "Error from verification: %s\n", err)
return

}

“A valid signature is indicated by returning a nil error.”

https://pkg.go.dev/crypto/rsa#example-VerifyPKCS1v15
https://go.dev/play/p/k0s6TKDRjU6


Can you spot the problem?

Because it returns an error in case of a failed verification, or nil otherwise:



To “poison” RSA verification, any 
of our dependencies can redefine 
rsa.ErrVerificaton = nil 
in its init() function and that 
makes RSA verification “pass” 
always, even on invalid signatures!

“A valid signature is [...] a nil error.”

The supply chain attack lurking in that API

You can redefine other packages’ exported variables! And this is a known issue.



DEMO

You can try to import the package 

“github.com/AnomalRoil/neverimport/withrsa”

and it will make your RSA 
verification pass:

https://go.dev/play/p/tE27bl2Gs53 

https://go.dev/play/p/tE27bl2Gs53


Actually I lied, there’s a workaround

Instead of comparing the error with nil, since we know its name, we could actually 
use errors.Is() to detect it, right? And indeed, when using that, even when importing 
our rogue packages, we’re catching the invalid signature:

https://go.dev/play/p/dLcWxyWCYu5 

But actually, we’re then just doing errors.Is(nil, nil) which is always true, 
even in case of a valid signature and we’re just getting false negatives instead of 
false positives, which is arguably better for signatures verification but still not great! 
Now nothing passes anymore: https://go.dev/play/p/Drq0GodgHoX 

https://go.dev/play/p/dLcWxyWCYu5
https://go.dev/play/p/Drq0GodgHoX


Actually I lied again, the workaround doesn’t really work

Instead of comparing the error with nil, since we know its name, we could actually 
use errors.Is() to detect it, right? And indeed, when using that, even when importing 
our rogue packages, we’re catching the invalid signature:

https://go.dev/play/p/dLcWxyWCYu5 

But actually, we’re then just doing errors.Is(nil, nil) which is always true, 
even in the case of a valid signature, and we’re just getting false negatives instead 
of false positives, which is slightly better for signature verification, but still not great! 
Now nothing passes anymore: https://go.dev/play/p/Drq0GodgHoX 

https://go.dev/play/p/dLcWxyWCYu5
https://go.dev/play/p/Drq0GodgHoX


The better API design: crypto/ecdsa

You can just do it like crypto/ecdsa signature verification!

According to the doc:

https://pkg.go.dev/crypto/rsa#example-VerifyPKCS1v15


But actually this is moot, you can continue returning error

The main issue with dependencies and malicious code in init()is that…

You cannot prevent it!

A malicious maintainer/attacker could include any kind of malicious code in their 
init() functions anyway, using Exec or unsafe after downloading a payload or 
whatnot, so “defensive programming” at the API level to try and fight supply chain 
attacks is not really necessary. 

(And also the reason why the Go team hasn’t “fixed” the crypto/rsa package.)



“Reflections on Trusting Trust” (1984) is valid for Go too!

As Ken Thompson said then:

“You can't trust code that you did not totally create yourself. 
(Especially code from companies that employ people like me.)” (emphasis mine)

Which means, if you are doing “security critical” code you have to:

- Review your dependencies, then review them again after every upgrade. Yes.
(This is why people do mono-repos or use vendoring 🤷)

- Hope for now that we, as a community, will come up with better tooling and solutions 
for the Go supply chain problem before it actually becomes one!

N.B. Ken Thompson might be employed by Google, and might notably be known for being one of the co-designers of Go.

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf


Credits

The rsa.ErrVerification example is a known issue that was previously 
already mentioned by multiple people in different contexts, including:

- by Dave Cheney at GopherChina
- in the Go under the hood book by golang.design
- by Changkun Ou in the proposal for allowing constant for arbitrary data types. 

And if you haven’t read it, really read “Reflections on Trusting Trust” by Thompson!

BTW, Go now has a perfectly reproducible toolchain on top of its reproducible 
binaries:
https://go.dev/blog/rebuild 

https://github.com/golang-design/under-the-hood
https://github.com/golang/go/issues/6386#issuecomment-613868278
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://go.dev/blog/rebuild

