
Have you distributed randomness?

Yolan Romailler
@AnomalRoil

August 2019 — BSidesLV

$ whoami

→ Cryptographer at Kudelski Security in Switzerland

→ CTF player (mostly crypto, forensic & misc)

→ Board games player

→ Speaker at Black Hat, DEF CON, North Sec, ... 2nd time at BSidesLV!

→ Go coder (“one day I’ll have time, yknw”)

2

Agenda

➢ What is distributed randomness

➢ What is drand

➢ Questions

3

What is randomness?
If I take a random binary string, each bit has probability 0.5 to be set to 1 or to 0.

Alright, are these strings random then?

1000000000000000
00000000111111111
0000000100000000

Well, maybe, maybe not! That’s the point of randomness, but while the probability
of drawing these strings at random is very low, each is as probable as any other
fixed binary string of the same length.

4

Why do we want randomness?
Many use-cases:

- Lotteries
- Election
- Computer applications (simulation of stochastic systems, numerical analysis,

probabilistic algorithms, computer games, …)
- Statistics (random sampling has to be… random!)
- Cryptography & secure communications!

And yet computers and their programs are fundamentally deterministic beasts!

5

Now how about distributed, verifiable randomness?
Usage of “shared” randomness:

- Tor
- (Blockchain) sharding
- Smart contract lotteries

Usage of “verifiable” randomness:
- Elliptic curve parameters (remember Dual_EC_DRBG?)
- Sortitions (think of how the law court juries are constituted in the USA)

Both notions are there to help with the auditability and transparency of services
that depend on random values.

BTW, Verifiable Random Function (VRF) is a thing: it’s the public-key version of
keyed hash functions, and it’s got its very own IETF draft!

6

https://en.wikipedia.org/wiki/Sortition
https://tools.ietf.org/html/draft-irtf-cfrg-vrf-04

Wish for “randomness beacons”
As we have seen, it is desirable to have randomness beacons that would in
particular be:

- Unpredictable: impossible to predict the next numbers
- Bias-resistant: the final output cannot be biased in any way
- Publicly verifiable: anybody can verify output is a “legit” random number
- Decentralized: output is produced by a set of (independent) parties.
- Available: the system must always be able to deliver random numbers

7

How about previous works?

Back then, existing providers of public randomness had to be trusted third-parties!

8

drand aims to address the need for distributed public randomness:

- drand is a software meant to be run by a set of independent nodes that will
then collectively produce verifiable randomness

- drand allows to build a standalone randomness-as-a-service network
- ideally fetching randomness should be as easy as fetching time with NTP

drand nodes can provide both private randomness and public randomness that is:

- unpredictable and bias-resistant
- verifiable

A new solution: drand

9

The history behind drand
➔ < 2015: NIST prototype randomness beacon provides public randomness
➔ 2015: Ewa Syta with the DEDIS team at EPFL started working on Scalable

Bias-Resistant Distributed Randomness, resulting in a published paper in 2017
➔ 2017: the DEDIS team started collaborating with DFINITY on various research

topics, and integrated their pairing implementation into DEDIS’ Kyber library.
➔ Septembre 2017: Nicolas Gailly, then a PhD student at DEDIS, started coding

drand, using DEDIS’ Kyber library
➔ 2018: more partners are interested by the idea of running randomness beacons
➔ June 2019: official launch of the League of Entropy, whose nodes are running

drand and whose members are distributed over the globe.

10

https://csrc.nist.gov/projects/interoperable-randomness-beacons
http://ewa.syta.us/
https://dedis.epfl.ch/
https://ieeexplore.ieee.org/abstract/document/7958592
https://github.com/dedis/kyber
https://www.cloudflare.com/leagueofentropy/

The theory behind drand
Based on previous works presented in the “Scalable Bias-Resistant Distributed
Randomness” paper.

Let us take a look at its different components!

11

https://eprint.iacr.org/2016/1067.pdf
https://eprint.iacr.org/2016/1067.pdf

Building blocks
Drand relies on the following cryptographic constructions:

- Feldman’s Verifiable Secret Sharing scheme
- Pedersen's distributed key generation protocol for the setup
- Pairing-based cryptography with Barreto-Naehrig curve BN256
- Threshold BLS signatures for the generation of public randomness
- Resharing scheme from a paper by Y. Desmedt and S. Jajodia
- ECIES for the encryption of private randomness

12

https://ieeexplore.ieee.org/abstract/document/4568297
https://link.springer.com/article/10.1007/s00145-006-0347-3
https://cryptosith.org/papers/pfcpo.pdf
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.2968&rep=rep1&type=pdf

Shamir Secret Sharing (t, n) & VSS

NB: SSS scheme assumes the dealer is honest. SSS is centralized!
Verifiable Secret Sharing (VSS) schemes protect against malicious dealers.

13

Basic idea of SSS is that 2 points define a line, 3 points can define a parabola,...
I.e. it takes t points to uniquely define a polynomial of degree t-1.

Protocol:
● A dealer creates a polynomial f(x) of degree t-1, with its first coefficient

being the secret value s we want to split into shares. That is, f(0) = s
● The dealer sends to each of the n shareholders their share f(i) for the node i
● The polynomial can be reconstructed out of t shares using Lagrange

interpolation.

14

Image credit: modified version from wikipedia.org

https://commons.wikimedia.org/wiki/File:Lagrange_polynomial.svg

Distributed Key Generation
DKG enables to “threshold-ize” many cryptographic primitives:

- digital signatures (Schnorr signatures, BLS …)
- asymmetric encryption (ElGamal encryption)

drand relies on Pedersen’s DKG scheme which essentially runs n instances of
Feldman’s VSS in parallel on top of some additional verification steps.
This allows each node to verify the shares its received during setup, and detect
and invalid dealer.

NB: the secret from Pedersen’s DKG can be biased, but it is safe to use for
threshold signing as formally shown by Rabin et al.

15

Recall - (t-n) Distributed Key Generation

f1(x) = s1 + a1,1 * x + … + a1,t-1* x
t-1

f2(x) = s2 + a2,1 * x + … + a2,t-1* x
t-1

fn(x) = sn + an,1 * x + … + an,t-1* x t-1

s1,1= f1(1) s1,2 = f1(2) ... s1,n = f1(n)

+ s2,1= f2(1) s2,2 = f2(2) ... s2,n = f2(n)

+ sn,1= fn(1) sn,2 = fn(2) ... sn,n = fn(n)

= s1 s2 ... sn

● Goal: Create shares of a private key that no party knows nor computed, with at least t shares
needed to reconstruct the private key

● Idea: Run n secret sharing protocol in parallel and each node adds all its shares
● Secret key s = ∑ si is recoverable by using Lagrange Interpolation on t shares si
● Public key is P = s * G with

○ G a generator of the group
○ P is publicly distributively computed by sharing commitments Fi(x) = fi(x) * G

Slide credit: Nicolas Gailly

Pairing-based Cryptography
Pairing-based crypto needs 3 cyclic groups of prime order q :
 𝔾1 , 𝔾2 that are additive groups and 𝔾𝑡 a multiplicative group with generators 𝑔1,
𝑔2, and 𝑔𝑡, respectively.

A pairing is a map e: 𝔾1× 𝔾2→𝔾𝑡 with these properties:

- Bilinearity: ∀𝑎,𝑏 ∈ℤq
∗, ∀ 𝑃∈𝔾1, ∀𝑄 ∈𝔾2, we have e(𝑎𝑃,𝑏𝑄)=e(𝑃,𝑄)𝑎𝑏

- Non-degeneracy: e ≠ 1
- For practical purposes e has to be computable in an efficient manner

17

Recall digital signatures
A digital signature scheme is a public-key scheme with a key pair (pk, sk), where
pk is a public key and sk is a private key.

Messages that are signed with the sk can then be verified with pk.

Being given message m and signature s, it is impossible to recover the secret key
sk, even if one does know the public key pk and message m.

Furthermore without the sk it is not possible to compute a valid signature under
public key pk for any message m’, even being given a signature for message m.

18

drand relies on BLS signatures to produces its randomness.

➔ Signature scheme proposed in 2004
➔ Pairing-based signatures, known for their short size
➔ Deterministic (only depends on the signer’s key and the message)

BLS has nice properties:

➔ Enables signature aggregation
➔ Enables threshold signing
➔ Obvious but important: signatures are unif. distributed in the signature space

Boneh-Lynn-Shacham (BLS) signatures

19

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.589.9141

BLS: Signing

20image credit: cryptoadvance on Medium

https://medium.com/cryptoadvance/bls-signatures-better-than-schnorr-5a7fe30ea716

BLS: verifying

21

Thanks to the bilinearity of our
pairing e, we can verify a
signature by checking that:

e(P, H(m)) = e(G, S) holds.

If the signature has been signed
using the private key pk
corresponding to P = pk·G, then it
holds since: e(P, H(m)) =
e(pk·G, H(m)) = e(G, pk·H(m)) =
e(G, S)

image credit: cryptoadvance on Medium

https://medium.com/cryptoadvance/bls-signatures-better-than-schnorr-5a7fe30ea716

Threshold BLS Signatures
➔ When using secret sharing to split a BLS secret key, the shares themselves

are valid BLS keys!

➔ When signing a message with them, one gets a valid signature for the public
key that can be associated to that share.

➔ Taking t such share’s signatures, which we call “partial signature”, one can
use Lagrange interpolation, just like with secret sharing, to reconstruct a
signature that will verify under the main, shared public key.
◆ NB: this means the shared secret key is never in memory during signing!

22

drand: setup of the protocol
This phase is expensive since it is in O(n2), but it must only be run once.

It is at that point that the Pedersen’s Distributed Key Generation protocol is used.

At the end of the setup phase, each node i has:

- A share si of the distributed secret s
- The associated public key of the secret P

NB: the threat model assumes an attacker controls no more than f out of n nodes
(for f < n/2)

23

Randomness generation itself is a threshold BLS signature protocol on the
previous round’s signature using the shares from the setup phase!

- The final, reconstructed signature is currently the beacon’s output, since we
want it to be verifiable BUT this is only well distributed over the signature
space, which is not equivalent to random bytes, so one needs to hash the
output to get bytes that are uniformly distributed out of that BLS signature.

- In the next version, the client fetching randomness, for now both drandjs and
the CLI, will hash the signature after having verified it, in order to give actually
random bytes to its users.

drand: generation of randomness

24

The drand beacons are synchronized in rounds of 1 minute. In every round drand
produces a new random value using threshold BLS signatures linked together in a
“chain of randomness” (not a blockchain, it got no blocks :P)

1. At round r, each node creates a partial BLS signature ur using its private
key and signs the previous full BLS signature Σr-1 along with the current
round index r

2. These partial signatures ur are broadcast and every node can reconstruct
the full signature Σr once they got t partial signatures

seed Σ-1= "Truth is like the sun. You can shut it out for a time, but it ain't goin'
away."

Chained Randomness

25

The features of drand
➔ Unpredictable, bias-resistant (thanks to BLS properties)

➔ Publicly verifiable (we can guarantee at least t nodes participated)

➔ Decentralized

➔ Available

➔ Fast: only needs RTT time + Lagrange interpolation

➔ Open source ! Check it out on Github: https://github.com/dedis/drand

➔ Provided with a JS example and a CLI tool to query nodes

26

https://github.com/dedis/drand

A consortium of organizations and individuals that are running drand nodes
together to form a distributed network.

It currently includes:

- Cloudflare
- EPFL
- Kudelski Security
- Protocol Labs
- UChile
- Individual nodes

The League of Entropy

27Image credit: Cloudflare

Using cool source of entropy
Also, drand makes it easy to integrate
your own source of entropy instead of
using /dev/urandom !

For instance, Cloudflare is using its
lava lamps to gather additional
entropy, UChile is using seismic data,
etc.

Have you got a cool one? Well...

28

Resharing allows for new members!
Another nice feature of drand is that we can perform
resharing, which allows to on-board new members into
an existing network such as the League of Entropy!
It allows to change the threshold t if so wished and
to distribute new shares

Wanna join us? Got a cool source of entropy?

Mail us at leagueofentropy@googlegroups.com and we'll get back to you for the
second round of the DKG meant to on-board more members.

29

mailto:leagueofentropy@googlegroups.com

How to use drand?

LIVE DEMO TIME!

30

31

It is super important to notice that:

- drand is in beta right now, and has not been thoroughly reviewed
- NB: the current output is only uniformly distributed in the signature space, you need to hash it!

- it provides PUBLIC randomness, i.e. do NOT generate secret keys with it

Furthermore, I need to stress that:

- drand is in BETA, it might not be stable, and the API might change.
- the League of Entropy has no SLAs!

The risks of using (drand) || (the League of Entropy)

32

Future Work
drand needs more love in order to get past the prototype level:

- Replace BN256 with the BLS12-381 curve, since BN256 security level has
been impacted by cryptanalysis breakthroughs in the EFDLP.

- Further improve the robustness and scalability of the drand setup process.
- Build applications relying on drand (I’m counting on you!)
- Improve unit testing
- Add support for multiple drand networks within one node
- Post quantum version?

33

“Random” quotes

The generation of random numbers is too important to be left to chance.

Robert R. Coveyou

Random numbers should not be generated with a method chosen at
random.

Donald Knuth

34

Questions?

35

