
Reaping and breaking keys at scale:
when crypto meets big data

Nils Amiet
Yolan Romailler

August 2018 — DEF CON 26

Public keys… what for?
● Break them!

○ Retrieve the private keys

○ Show how easy it is

○ If we can do it…

○ … guess who can too!

2

Crypto recap: RSA
● RSA (Rivest–Shamir–Adleman)

○ Choose two large prime numbers
p and q, typically 1024-2048 bits.

○ Public key (n, e)
■ with n = p * q
■ and some e such that e and λ(n) are coprime

○ Private key (n, d) where d ≡ e^−1 (mod λ(n))

○ RSA security relies on the hardness of the integer factorization problem

3

Crypto recap: RSA

p q

4

Crypto recap: RSA

p q·

5

Crypto recap: RSA

n = p q·

6

Crypto recap: RSA

n = p q·
GCD attack: the GCD (greatest common divisor) of n and m
is q and we can easily compute n/q = p and m/q = r.

m = q r·
7

Crypto recap: ECC
● ECC (“Elliptic Curve Cryptography”)

○ Security based on the hardness of
the EC discrete logarithm problem

○ Working with an elliptic curve C

○ Private key is an integer d

○ Public key is a point Q = (x, y) = dG

■ where (x, y) are the coordinates of the point on a given known curve

8

Passive attacks on public keys
● The Return of Coppersmith’s Attack (ROCA)

● Invalid parameters
○ DSA generator
○ Key sizes
○ Invalid curve attacks

● RSA modulus factorization (Batch GCD)

★ Batch GCD already used in 2010, 2012, 2016 to break weak keys
○ On datasets <100M keys

★ These are all known attacks!

★ And they are completely passive, the target is left unaware
9

Collecting public keys
● X.509 certificates

● SSH keys

● PGP keys

10

Fun fact:
Some certificates

have a negative
validity period!

Keys (millions) per key container type

11

Keys collected per data source
● X.509 certificates

○ > 200M from HTTPS scans
○ 1-2M each from SMTP(S), POP3(S) and IMAP(S) scans

● SSH keys
○ 71M from CRoCS* dataset
○ 17M from SSH scans
○ 4.7M on Github.com
○ 1.2M on Gitlab.com

● PGP keys
○ 9.5M on SKS key servers
○ 220k on Keybase.io
○ 8k on Github.com

12

Fun fact:
We validated CRoCS results.
One smart card model had a bad RNG and
generated keys with common factors

*CRoCS: Center for Research on Cryptography and Security

Our public keys stash: Big Brother style
● Attacks like RSA Batch GCD work best with larger datasets

○ More keys = more chances of finding common factors

● We collected as many public keys as we could
○ > 346M unique keys and growing
○ Collection made over 1 year

● 273M unique domain names on Certificate Transparency… profit!
○ Still in the process of ingesting all the certificates!

13

Key types
● RSA 327M
● ECC 14M
● DSA 2.6M
● ElGamal 2.5M
● GOST R 34.10-2001 1k
● Other <1k

14

Tools
Data collection:

● Fingerprinting with cert/key grabbing: Scannerl with custom modules
● Key parsers: Python
● Data ingestion: NiFi and HDFS
● Data exploration: Presto

Breaking keys:

● Batch GCD on RSA keys, using a custom distributed implementation
● ROCA attack on RSA keys
● Sanity checks on EC keys

15

Demo

16

Test your keys today!
You can go to our website:

keylookup.kudelskisecurity.com
and submit your key to test it against our dataset!

17

https://keylookup.kudelskisecurity.com

Demo

18

Demo

19

Demo

20

Behind the scenes
● Batch-GCD:

○ 280 vCPUs cluster

○ 2 TB storage for storing product trees

○ Test new keys incrementally

■ Takes less than 1 hour for a bunch of keys

● HDFS cluster with 10+ data nodes

● Quick DB lookups thanks to partitioned tables

● Distributed fingerprinting using 50 Scannerl slaves

21

Results: RSA keys
Over 210k RSA keys factored through batch GCD

○ Actually broken keys!
○ 207k X.509 certificates

■ 260+ certs currently in use, 1400+ certs used over last year
○ 3100+ SSH keys
○ 295 PGP keys with common factors

■ 287 keys with more than 2 factors

22

Fun fact:
There are more PGP keys with 3+ factors
than both SSH and X.509 ones together.

Results: RSA keys
Over 4k RSA keys vulnerable to ROCA

○ 33% of size 2048 (weak), 64% of size 4096 (should be fine)
○ Mostly PGP keys (97%)
○ Found vulnerable keys on Keybase.io, Github.com and Gitlab.com!

Double check your keys!

23

Results: RSA keys
Many routers seem concerned:

24

car salesman: *slaps roof of router*
this bad boy can fit so many
vulnerabilities in it.

Fun fact: not my typo

Results: RSA keys

D-Link problem

25

Results: ECC keys
● The adoption rate of ECC differs greatly depending on the source:

○ X509 and PGP are steadily adopting ECC

● Most common curves for SSH:
○ secp256r1 97,68%
○ secp521r1 1,87%
○ Curve25519 0,37%
○ secp384r1 0,07%

26

Growth of ECC keys

Scan failure

27

Fun facts
● At least 3442 keys are re-used as PGP keys, SSH keys and/or X509 certs!

● PGP subkey/master key ratio
○ Most people have only one subkey?!

● At least 486 of the keys we could factor had more than 2 factors!

● DSA is dead (OpenSSL deprecated it in 2015):
○ Only 3106 X.509 certs seen over last year

○ Less than 0.55% of SSH keys are DSA based

28

Fun facts
● Speaking of DSA:

FIPS 186-3 specifies L
and N length pairs of:
(1024, 160),
(2048, 224),
(2048, 256),
(3072, 256).

29

Conclusion
● Mind your keys!

● Anybody can do the same kind of silent attack! And maybe they already do…

● Thank you!

Follow us: Twitter/Github

● Nils: github.com/amietn

● Yolan: @anomalroil

● Kudelski Security

30

Links
● Check your keys

○ https://keylookup.kudelskisecurity.com

● Find our open source code on Github
○ https://github.com/kudelskisecurity/k-reaper

○ https://github.com/kudelskisecurity/scannerl

● Find more results and analysis on our blog
○ https://research.kudelskisecurity.com

31

https://keylookup.kudelskisecurity.com
https://github.com/kudelskisecurity/k-reaper
https://github.com/kudelskisecurity/scannerl
https://research.kudelskisecurity.com

