
Taking the (quantum) leap with Go

Mathilde Raynal1 & Yolan Romailler2

1 Kudelski Security
2 SICPA (work done at Kudelski Security)

1

About us

At Kudelski Security we:

- are actively involved in research;

- provide quantum-resistant security services;

- run a crypto blog with regular posts.

Mathilde, research intern @ Kudelski & EPFL

- My work is 1 cup of crypto, 1 tbsp of
privacy and a pinch of machine-learning

- when not geeking, I can be found at a
bouldering gym

- linkedIn: mathilde.raynal

Yolan, cryptographer @ SICPA, prev. @ Kudelski

- Terrible cook: plain crypto sprinkled with
some security engineering

- loves playing CTFs and (with) Go
- Twitter: @anomalroil

2

Introduction

Quantum computers threaten the security of public-key
schemes that we currently use.

They will not protect sensible information anymore.

Symmetric-key cryptography and hash function are
impacted, but not broken.

Source: MIT Technology Review

The quantum computer threat is looming at the horizon for
our cryptographic algorithms.

3

Public-key crypto… what for?

4

● Connecting to remote machines without relying on weak mere passwords with SSH

● TLS communication (basically the whole web)

● Sending PGP emails?

● Using modern VPNs such as Wireguard.

● Everywhere in blockchains.

● Encrypting passwords with tools such as gopass.

● ...

https://www.wireguard.com/
https://www.gopass.pw/

Post-quantum cryptography to the rescue

Cryptography that is resistant to attacks ran on both classical and quantum computers:

● Lattice-based

● Isogeny-based

● Code-based

● Hash-based

● Multivariate

● Symmetric.

Different trade-offs are available (runtime, bandwidth, …) so it is important to extract the
requirements of your application to choose the best post-quantum tool.

5

Why should you already want post-quantum
cryptography in your project?

Research & Standardize

Deploy

Complete transition

6

Why should you already want post-quantum
cryptography in your project?

Research & Standardize

Deploy

Complete transition

Time before a scalable quantum computer is built

7

Why should you already want post-quantum
cryptography in your project?

Research & Standardize

Deploy

Complete transition

Time before a scalable quantum computer is built

vs

8

Why should you already want post-quantum
cryptography in your project?

«Progress has been swift. In a few short years we now have over 20 of the world's most powerful
quantum computers, accessible for free on the IBM Cloud.» - IBM Quantum Experience

Fully functioning quantum computers will arrive sooner than many have anticipated:

● we should not postpone as crypto-agility is a true challenge.

Increasing the key sizes of classical schemes is not a viable option regarding security or
performance:

● a quantum resistant RSA protocol would require 1 TB keys.

9

https://quantum-computing.ibm.com/

Crypto Refresher

★ Hybrid encryption

○ Public-key cryptography is slow, symmetric key crypto is usually fast.

○ People want fast internet.

○ We need to use as little public-key crypto as possible → hybrid encryption

Uses a public-key algorithm to establish a shared secret, uses shared secret to do symmetric

encryption

Most secure protocols (TLS, SSH, IPsec, ...) nowadays are relying on hybrid encryption: a public-key

algorithm for key-exchange or authentication, and a symmetric key algorithm (AES) for actual data

encryption.

10

Crypto Refresher

DSA

A Digital Signature Algorithm is used to produce a signature on a message using a secret signing

key. The signature can be verified by anyone holding the associated public key.

★ Unforgeability → can be used as authentication mechanism

KEM

The goal of a Key Encapsulation Mechanism protocol is to securely exchange symmetric key

material over an insecure channel using public key cryptography.

★ Confidentiality → can be used to exchange key material

11

Our library

The CRYSTALS suite is made of two algorithms:

● Dilithium, a DSA, and

● Kyber, a KEM.

Both are very promising alternatives for post-quantum cryptography, and are finalists in the

post-quantum cryptography standardization competition organized by NIST.

They are lattice-based, and stand out for their simplicity, tight security and overall versatility.

They have a great performance, and have been shown to excel some of the widespread classical

solutions. Their main drawback is their relatively large outputs size, which might impact the

performance, but is never considered a bottleneck.

12

Our library

We ported the reference implementation of the CRYSTALS algorithms from C to Go.
It is open-source and available at: https://github.com/kudelskisecurity/crystals-go (QR code).

At Kudelski Security, our mission is to emphasize practical security, so we put a lot of efforts
into integrating as many security features as possible.

Don’t hesitate to open issues on our Github!

13

https://github.com/kudelskisecurity/crystals-go

API

14

In two steps: first choose a security level, then invoke the core functions.

API

15

Dilithium:

NewDilithium2() → d
NewDilithium3() → d
NewDilithium5() → d Ty

pe

Co
re

(d *Dilithium) KeyGen() → pk, sk
(d *Dilithium) Sign(sk, msg) → sig
(d *Dilithium) Verify(pk, sig, msg) → boolean

API

16

Dilithium:

NewDilithium2() → d
NewDilithium3() → d
NewDilithium5() → d Ty

pe

Co
re

(d *Dilithium) KeyGen() → pk, sk
(d *Dilithium) Sign(sk, msg) → sig
(d *Dilithium) Verify(pk, sig, msg) → boolean

1 d := NewDilithium2()1 d := NewDilithium2()

API

Dilithium:

NewDilithium2() → d
NewDilithium3() → d
NewDilithium5() → d Ty

pe

Co
re

17

(d *Dilithium) KeyGen() → pk, sk
(d *Dilithium) Sign(sk, msg) → sig
(d *Dilithium) Verify(pk, sig, msg) → boolean

1 d := NewDilithium2()
pk

1 d := NewDilithium2()
2 pk, sk := d.KeyGen(seed)

API

Dilithium:

NewDilithium2() → d
NewDilithium3() → d
NewDilithium5() → d Ty

pe

Co
re

18

(d *Dilithium) KeyGen() → pk, sk
(d *Dilithium) Sign(sk, msg) → sig
(d *Dilithium) Verify(pk, sig, msg) → boolean

1 d := NewDilithium2()
pk

1 d := NewDilithium2()
2 pk, sk := d.KeyGen(seed)

3 msg := []byte(“A message”)
4 sig := d.Sign(sk, msg)

API

Dilithium:

NewDilithium2() → d
NewDilithium3() → d
NewDilithium5() → d Ty

pe

Co
re

19

(d *Dilithium) KeyGen() → pk, sk
(d *Dilithium) Sign(sk, msg) → sig
(d *Dilithium) Verify(pk, sig, msg) → boolean

1 d := NewDilithium2()
2 pk, sk := d.KeyGen(seed)

3 msg := []byte(“A message”)
4 sig := d.Sign(sk, msg)

1 d := NewDilithium2()

2 ok := d.Verify(pk, sig, msg)sig, msg

pk

API

Kyber:

NewKyber512() → k
NewKyber768() → k
NewKyber1024() → k Ty

pe

Co
re

20

(k *Kyber) KeyGen() → pk, sk
(k *Kyber) Encaps(pk, coins) → c, ss
(k *Kyber) Decaps(sk, c) → ss

API

Kyber:

NewKyber512() → k
NewKyber768() → k
NewKyber1024() → k Ty

pe

Co
re

21

(k *Kyber) KeyGen() → pk, sk
(k *Kyber) Encaps(pk, coins) → c, ss
(k *Kyber) Decaps(sk, c) → ss

1 k := NewKyber512() 1 k := NewKyber512()

API

Kyber:

NewKyber512() → k
NewKyber768() → k
NewKyber1024() → k Ty

pe

Co
re

22

(k *Kyber) KeyGen() → pk, sk
(k *Kyber) Encaps(pk, coins) → c, ss
(k *Kyber) Decaps(sk, c) → ss

1 k := NewKyber512()
2 pk, sk := k.KeyGen(seed)

3 ss := k.Decaps(sk, c)

1 k := NewKyber512()

2 c, ss := k.Encaps(pk, coins)

pk

c

Performance Overview

Security: We provide a library that is both theoretically and practically secure.

We integrated countermeasures for many published implementation attacks

(side-channel)

Runtime (ms) Size (B)

Dilithium
KeyGen Sign Verify Public Key Signature

0.4 1.8 0.5 1 952 3 293

Kyber
KeyGen Encaps Decaps Public Key Ciphertext

0.4 0.2 0.3 1 184 1 088

23

crystals-go vs go/x/crypto

24

PQ-WireGuard

25

crystals-go

&

PQ-WireGuard

26

crystals-go

&

+ 2 IP packets

+ 0.2 ms

Attend our talk at the NIST 3rd PQC Standardization Conference for more details !

Conclusion

Our experimental results should be used as
motivation to start the transition towards post-

quantum alternatives !

Our library is fast, secure, and easy to use and
integrate in your project, why wait?

References

Léo Ducas et al., CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme, 2017
Joppe Bos et al., CRYSTALS-Kyber: A CCA-Secure Module-Lattice-Based KEM, 2017

Crystal image by Tatyana from Noun Project

Checkout our other material on quantum security: Point of View Paper – Quantum Security
Our research blog about the library: https://research.kudelskisecurity.com/?p=15394

About the integration in WireGuard: Third PQC Standardization Conference | CSRC

27

https://resources.kudelskisecurity.com/point-of-view-paper-quantum-computing-crypto-and-security
https://research.kudelskisecurity.com/?p=15394
https://csrc.nist.gov/Events/2021/third-pqc-standardization-conference

Q & A

28

