
One Key To Rule Them All

Yolan Romailler
@AnomalRoil

May 2019 — North Sec

Refresher: Elliptic curves
Seen last year at NSec !

In the talk “Getting ahead of the elliptic curve” by Martijn Grooten

An elliptic curve will simply be the set of coordinates (x,y) :

on which we can define an addition law “+” that is well-behaved.

2

https://www.youtube.com/watch?time_continue=182&v=HvwotkXWFu4

Crypto refresher: ECC
ECC aka “Elliptic Curve Cryptography”

● Working with the subgroup of prime order m of an
elliptic curve C generated by a given
generator G

● Security based on the hardness of the EC discrete
logarithm problem (DLP):

If the point Q = nP is obtained by scalar
multiplication of an integer n with the point P,
being given only Q and P, it is hard to retrieve n.

3

Refresher: EC
“Scalar multiplication”?

Comes naturally from the additive operation “+” under which Elliptic Curves over a

finite field 𝔽p form an abelian group, as you’ve seen last year ;)

By definition, scalar multiplication is naturally distributive over EC addition:

4

Crypto refresher: ECC
ECC aka “Elliptic Curve Cryptography”

● Working with the subgroup of prime order n of an elliptic curve C generated
by a given generator G.

● Security based on the hardness of the EC discrete logarithm problem.

In common EC schemes (ECDSA, ECDH, ECIES), we usually have that:

● A private key is simply an integer k < p (it is an element of 𝔽p)
● A public key is a point P = (x, y) on the curve generated by scalar

multiplication of the private key with the base point: P = kG
○ where (x, y) are the coordinates of the point on the curve C

5

Using ideas coming from the Bitcoin world
Have you ever heard of the cool idea behind the BIP-32 proposal also known as

“Hierarchical Deterministic Wallets” by Pieter Wuille?

It introduced the idea of having so-called child keys derived from parent keys

when working with a EC signature algorithm such as ECDSA or Schnorr

signatures.

This is made possible using the simple math on EC we just saw!

6

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

The principle behind BIP-32
In Bitcoin, addresses are the hash of a ECDSA public key, which is a point on

an Elliptic Curve. It uses the same kind of key pair that we discussed earlier.

The idea is that if you have a private key k and a public key P = kG, you can pick

a deterministically generated value r and if you take the point Q = P + rG, you

actually just computed the public key for the private key k + r, since

P + rG = kG + rG = (k + r)G by distributivity !

7

BIP-32, the stuff I skipped
● It uses “extended” keys that contain both k and a

so-called “chain code”
● It uses HMAC to derive the value r using the

chain code as a HMAC key
● It uses indices i to index its child keys
● It has a notion of hardened keys that do not allow

for public key derivation
● Its keys are nodes of a key tree because it

enables fun bitcoin stuff

Nonetheless, the core idea is that P + rG = (k + r)G
and that’s reusable!

8

Public keys… for what?
● Connecting to remote machines without relying on weak mere passwords!

● Sending PGP emails?

● Connecting to cool modern VPNs such as Wireguard.

● Sending / receiving cryptocurrencies.

● Encrypting passwords with tools such as gopass.

● ...

9

https://www.wireguard.com/
https://www.gopass.pw/

ECC SSH keys out there
Most common elliptic curves for SSH according to a world-wide key collection:

○ secp256r1 97,68% (aka “NIST P-256”)
○ secp521r1 1,87%
○ Curve25519 0,37% (Ed25519)
○ secp384r1 0,07%

Ed25519 isn’t directly compatible with BIP-32 because it hashes its private key.
(Can be worked around by tweaking the signing algorithm, but not a drop-in
replacement.)

10

What for?
SSH key derivation sounds fun, but why is it interesting?

- Anyone can generate a new public key for you being given your public key, and

you’ll have the private key as long as they tell you the random r they used

- You can generate new keys as you wish, but just need to store one single key!

- It’s cool easy to use, and doesn’t weaken security

- It might allow for fun PKI systems, where you can link a public key to another

one by revealing the random value r shall

11

Demo
./1key -key path/to/key derivation-code

-a allows to export your private key (and even to encrypt it)

-q adds the key to the ssh-agent on unix devices and then quit

-rm removes ALL the keys in ssh-agent. But ~/.ssh/* keys will be reloaded.

-s “user@192.168.0.42” will “exec” the ssh command with the provided args.

12

Disclaimer: just a POC
But you can test it using your keys, and it works!

I have open-sourced my (go) code on:

github.com/kudelskisecurity/1key

13

How about security?
Having a single SSH key is not bad per se. However it can leak data:

● https://github.com/anomalroil.keys

● https://gitlab.com/anomalroil.keys

Using child keys is not worse than using a single private key.

It can also enable some nice “recovery” possibilities, if you loose your computer.

BTW: always store your private keys in an encrypted form!

But...
14

https://github.com/anomalroil.keys
https://gitlab.com/anomalroil.keys

From child key to master key!
A child key is simply the master key k plus a given value r.

So, if one knows the child key (k + r), and knows the value r, it is easy to recover
the value k = (k + r) - r

This can both:

- allow you to have different private keys on each of your devices and yet a
single “master public key”

- be a problem if one of your private child key is compromised and the attacker
knows the value r

(Can be done using ./1key -i -r “hex-value”)
15

Applying this idea to other fields?
● Wireguard key distribution? Uses Ed25519, where the private key is hashed...

Requires some tweaking on Wireguard itself :(

● Honest ransomware aka “RIP-001” ;)

● “Disposable keys” with “opt-in” non-repudiability (you can reveal r or not)

16

Conclusion
You can try it out, if you want. Open issues on Github, or submit PR!

Mind your keys, keep them encrypted!

Thank you!

17

Links
● Just a reminder to check your RSA public keys:

https://keylookup.kudelskisecurity.com/

● Find my open source code on Github:

https://github.com/kudelskisecurity/1key

● Find more results and analysis on our blog:

https://research.kudelskisecurity.com

● Download these slides on my homepage (in a couple of days):

https://romailler.ch/page/talks/

18

Follow me on Twitter:
@AnomalRoil

https://keylookup.kudelskisecurity.com/
https://github.com/kudelskisecurity/1key
https://research.kudelskisecurity.com
https://romailler.ch/page/talks/
https://twitter.com/anomalroil

